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Prefagg 

The purpose of this study wi.  to determine the 

applicability of using Halstsad's Software Science theory to 

predict compile time and evaluate compilers for Ada.  The 

need for more objective tools in evaluating software is 

becoming more apparent. I think the results of this project 

are useful and will serve as a baseline for future 

comparisons.  It may be the tool that many researchers, 

managers, and evaluators have been searching for. 

I wish to thank a number of people who helped me complete 

this research project.  In particular, Dr. Wade Shaw, my 

advisor, and Or. Jim Howatt both of whom reviewed this work 

during its development and provided countless helpful 

suggestions.  Without Dr. Howatt*s assistance, I would have 

still been counting operators and operands in Ada programs. 

Deep gratitude is expressed to Dr. Shaw, who was 

instrumental in providing the guidance and directions I 

needed to finish my research effort.  I would like to give a 

special thanks to Captain Deese of the Information Systems 

and Technology Center at Wright-Patterson AFB, Ohio, who 

found time in his busy schedule to give me information and 

instructions on the Data General computer.  I am also 

indebted to Captain Robert S. Maness; a fellow AFIT student, 

my friend and partner; for his support and patience in 

getting the research data necessary to complete our 

v<tv     respective projects.  Finally, I can not forgot the most 

important person in my life, my wife to be, Amy Bass.  Her 
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patience and continuing support to me deserves more than the 

usual amount of credit.  The encouragement I received from 

her was Inspirational.  I couldn't have done It without her. 
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Abstract 

With the development of Ada, the official programming 

language of the DoD, methods are needed to validate and 

evaluate various Ada compilers to determine if the compilers 

meet the DoD requirements.  This investigation introduces a 

new tool using Halstead's Software Science theory to predict 

compile time and to evaluate the efficiency of alternative 

Ada compilers. 

The analysis was accomplished by selecting a model based 

on Halstead's time equation.  Once the model was 

established, programs from a benchmark test suite were used 

to evaluate the predictive power of the model and to develop 

a performance index for comparisons. 

The results suggest that the compiler model is useful in 

predicting compile time, but of more importance, it is 

useful in the development of a performance index.  The study 

shows that the average compilation time is not a good 

measure for comparing performance rates.  Therefore, with 

further research, the compiler model may ba a useful tool 

for software analysts.   
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APPLICATION OF HALSTBAD'S TIMING MODEL TO PREDICT 
THE COMPILATION TIME OF ADA COMPILERS 

T] 

I.   Introduction 

Technological advances in computer software are changing 

our society.  Computer systems are becoming more numerous, 

more complex, and deeply embedded in our society.  We can no 

longer simply write programs, but must engineer software for 

our systems to help offset the rising cost of software 

development (9:8-9).  The Department of Defense (DoD) 

recognized this challenge and realized that a new standard 

^'     language and its environment (i.e. compilers, loaders, 

library managers, etc) had to be created to encourage the 

use of modern software engineering techniques (4).  As a 

result, the Ada programming language was developed.  With 

the introduction of this new standard programming language 

for the DoD, software engineering tools are needed to 

evaluate the performance and reliability of programs written 

in this language.  These tools are more important today 

because millions of dollars of equipment, and even lives may 

depend on the proper execution of these computer programs. 

Ada (4:1-21) was developed under sponsorship of the DoD 

to support the development of software for embedded computer 

:-"'.<.     systems.  For example, one area of use will be in the field 

of avionics.  In the development of avionics software, 

1 
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efficient compilers are needed.  Therefore, new tools, 

besides benchmark test suites, are needed to evaluate 

compiler performance (good code, optimization, compilation 

time, etc).  Benchmark test suites have a bad reputation 

because the performance figures are sometimes cited out of 

context and overgeneralized into overall ratings (20:31). 

One possible new tool for determining a performance index 

for compilation time in compilers is to use an extension of 

Maurice Halstead's Software Science theory. 

Maurice Halstead developed a theory called Software 

Science with the objective of making sound judgements about 

software quality and complexity.  Software Science theory 

(9:13) is based on the fact that algorithms can be measured 

by their physical characteristics, i.e. the number of 

distinct operators and operands and the total number of 

operators and operands within the computer program.  Using 

this assumption, Halstead was able to develop several 

mathematical formulas that accurately express several 

attributes of algorithms.  One of the formulas, the 

programmer time equation, developed from Halstead's study 

can be used to express the amount of time required for a 

programmer to translate a predefined algorithm into a given 

computer programming language. 

It is interesting to speculate about other uses of 

Halstead's formulas.  For instance, the human translation of 

an algorithm into a programming language can be considered 

"cv*     to be similar to the process that a compiler goes through to 

# 
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Background 

In the 1970's, the DoD (4:1-21) recognized a need for a 

standard, high-order language to reduce the cost and effort 

to develop and maintain military software systems.  However, 

a suitable language did not exist that met all the 

requirements.  As a result, the DoD sponsored a development 

effort to produce a new language which has become known has 

Ada, after Lady Augusta Ada Byron, the world's first 

programmer. 

According to Booch (4:44), Ada is a strongly typed 

language that provides a rich set of constructs for 

describing primitive objects and operations, and in 

v 
'•1 

translate a computer program into executable machine code. 

Given that Halstead's formula can predict the time required 

for the human translation process, it is interesting to 

speculate if it can be used to accurately predict the time 

required for compilation of a program.  If this can be done, 

performance evaluation can be performed on compilers to 

determine their efficiency.  Consequently, software science 

may be a possible tool for analyzing compilation times. 

This paper describes a research effort to determine if an 

extension of Halstead's theory on predicting time is 

applicable to Ada compilers, and thereby able to provide a 

performance index for comparisons.  If so, objective 

decisions on at least one metric of compiler performance is 

possible. 

'teWtftertrtf^^ 
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addition, offers a packaging construct with which we may 

build and enforce our own abstraction.  Features such HS 

exception handling, parallel processing, real-time control, 

and information hiding, makes Ada a language useful for many 

diverse applications. 

The various modern language features incorporated in Ada 

are intended to improve software quality and increase 

programmer productivity.  The language seems promising. 

However, for Ada (25) to serve as the official language for 

DoD, compilers need to be developed which conform to the Ada 

language specifications and produce efficient object code. 

As a result, methods are needed to validate and evaluate 

various compilers in order to determine which could best 

meet OoD requirements. 

In validating and evaluating compilers, performance 

information such as compilation time, memory space 

requirements, object code generation, error checking, etc 

must be analyzed.  Currently, benchmark performance test 

suites are used.  For example, the Ada Evaluation and 

Validation (E&V) team collected numerous test routines from 

the public domain to provide users with "1) an organized 

suite of compiler performance tests, and 2) support software 

for executing these tests and collecting performance 

statistics" (12).  This test suite is called the Prototype 

Ada Compiler Evaluation Capability (ACEC).  Currently, the 

ACEC is not completed; it fails to test all the features of 

the language. 
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Benchmark test suites are useful in evaluating compilers, 

but tests must be complete and repeatable.  The ACEC 

measurements, for example, "... are only an indication of 

the effect produced by an Ada language feature when it is 

used in a particular compiler/run-time combination.  These 

measurements are not absolute performance metrics of the 

efficiency of a particular compiler architecture" (12). 

Benchmark test suites have a bad reputation because the 

tests are sometimes misapplied, incorrectly performed, or 

inadequately documented (20).  Therefore, other methods are 

needed to make objective decisions in evaluating compilers. 

For example, the performance metric, compilation time, is a 

perfect example to use in the development of a mathematical 

model to determine the performance of various compilers. 

The author is not suggesting to replace benchmark test 

suites for evaluating compilers; however, using an extension 

of Halstead's Software Science theory may provide evaluators 

the tool to make consistent and objective evaluations of at 

least one performance metric - compilation time.  This model 

could be more useful than using the average compilation time 

to evaluate compilers. 
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According to Halstead (11:3), Software Science is defined 

as follows: 

Software Science is concerned with algorithms 
and their implementation, either as computer 
programs, or as instruments of human commun- 
ication.  As an experimental science, it deals 
only with those properties of algorithms that 
can be measured, either directly or indirectly, 
statically or dynamically, and with the relation- 
ships among those properties that remain in- 
variant under translation from one language to 
another. 

Halstead (10:4) undertook his study on the properties of 

algorithms (computer programs) with the objective of making 

quality judgments about the size and the programming effort 

required to create them.  Specifically, he was interested in 

predicting the time and effort required for a programmer to 

write a program, the length of the program, and the number 

of programming errors generated.  He developed a theoretical 

framework based on the number of operands and operators in a 

algorithm and demonstrated that the theory can be validated 

(14:13-35).  A detailed discussion on Halstead's Software 

Science formulas is presented in Chapter II.  The question 

now is - can Halstead's model of programming time be used 

for compilers? 

ggahlM 

The problem addressed in this thesis is to investigate 

the predictive power of Halstead's model of Software Science 

^AV.    in estimating compilation time across alternative Ada 

compilers. 

# 
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This study concentrates on the compilation process, 

applying concepts developed by software science.  Since Ada 

is the new DoD standard for programming languages and is of 

high interest in the military community, this thesis focuses 

on Ada compilers. 

The purpose of this investigation is two-fold: (1) To 

determine if there is significant difference in the 

predictive ability of Halstead's model of Software Science 

in explaining compilation time among alternative Ada 

compilers; and (2) To determine if there is significant 

difference in the discrimination rate across alternative Ada 

compilers.  With this in mind, this thesis will: 

(1) Develop Halstead's Software Science theory and 

its application to compilers. 

(2) Develop a counting strategy for Ada. select a set 

of Ada programs, and select a set of Ada compilers. 

(3) Design a statistical model and performance 

index. 

(4) Analyze the model, test the hypotheses, and 

summarize the results. 
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General Aaaumntiona 

Compilation time is influenced by many factors.  For 

instance, how a compiler is written will affect the 

compilation effort - one-pass, two-pass, and/or optimized or 

not, etc.  Halstead's mathematical model for programming 

effort is based on properties of the programming language, 

not on the ability of the programmer.  It seems reasonable 

to approach the compilation effort in a similar fashion. 

Correlation of data from this study with the theoretical 

estimates is used to Justify the extension of Halstead's 

model in predicting compilation time.  The Justification for 

this assumption is that Halstead's model performs well 

(11:46-61) in predicting the time for a programmer to 

translate an algorithm from a mathematical model into some 

high order language.  It then might be assumed to be a good 

model for estimating compiler time, since a compiler is 

performing the same function as a programmer - translating 

an algorithm from one level language to another. 

For the purpose of this study, all compilers examined 

have been validated, all programs used compile correctly, 

and all compilation times are the results of no 

optimization.  Additionally, the discrimination rate 

Halstead used to describe the programmer speed is assumed to 

be the translation or processing rate for a compiler. 

ira^i^m^^^ *Z*i 
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Although this study does not cover compiler design, 

properties of algorithms, or different languages, success of 

this investigation might generate further experiments 

designed to test the extension of Halstead's model for 

predicting the time for the compiler to translate a program 

from one language to another. 

General Approach 

Halstead's model of Software Science was used to propose 

a general model for predicting compilation time.  An 

experiment was designed to collect data.  This data was used 

to estimate the unknown variables of the mathematical model 

and to test relevant hypotheses. 

The experimental design required that the algorithms be 

selected with a wide range of software science metrics.  The 

algorithms were compiled on four different computers having 

Ada compilers and the compilation times were recorded.  A 

major issue was measuring the compile time as accurately as 

possible.  On a multi-user computer system, compilation time 

cannot be measured simply by a stop watch because of the 

contention with other users.  Therefore, total CPU time used 

in the compilation process was used. This time was obtained 

from the list or history file generated by the compiler. 

The software metrics necessary for the proposed 

mathematical model were extracted from the algorithms 

manually.  This required a set of rules for the 

\\^     identification and enumeration of each operator, operand. 
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and I/O variables in each program.   A program was measured 

by applying the counting rules; and then, based on the 

resulting parameter values, the various software metrics 

were calculated.  At this point, several mathematical models 

based on software science metrics were proposed in 

predicting compilation time for a compiler.  The models were 

then evaluated using the analysis of variance method and the 

linear regression tool on the SAS software package for data 

analysis.  Besed on this evaluation, one model was selected 

for further analysis. 

The model was used to test two hypotheses: 

(1) There is no significant difference in the 

predictive ability of Software Science in explaining compile 

time across alternative Ada compilers. 

(2) There is no significant difference in the 

discrimination rate across alternative Ada compilers. 

The correlation, or lack of correlation, of the 

estimates with the actual compilation time will indicate the 

merit of using Halstead's Software Science theory in 

predicting the time to compile an Ada algorithm.  If there 

is a correlation between software science and compilation 

time, then the development of a performance index may become 

a valuable tool for DoD, in validating and evaluating Ada 

W    compilers. 

10 
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Sgquenog of Prgggntation 

Chapter II provides an overview of Halstead's Software 

Science theory.  Since software science is based on the 

operators and operands of a software program, a discussion 

on counting strategies is given.  In addition, a review of 

published findings covering both acceptance and criticisms 

is presented.  Finally, why software science can be used in 

explaining compilation time for compilers is discussed. 

Chapter II was written with the cooperation of Captain 

Robert S. Maness (17), whose thesis validated the use of 

software science in explaining compiler time. 

In Chapter III, an explanation of the research methodology 

used to evaluate Halstead's Software Science to analyze 

compiler time is presented.  Chapter IV, contains the 

results of the experiment.  Finally, Chapter V, the 

conclusions and recommendations, summarizes the results, 

describes the worthiness of the compiler prediction model, 

and recommends areas for further study. 

11 
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II.  A Review of Halstead*a Software Science Theory 
and Ita Application to Compilera 

Maurice Halstead, in his classic work on Software Science 

(11)• attempted to define and measure the complexity of 

software by using mathematical models.  With these 

mathematical models, Halstead was able to predict software 

engineering metrics such as the number of errors in a 

program, the programmer's time for implementation, and the 

difficulty of implementing a program.  The theory's accuracy 

in predictions has been shown to be both adequate and 

inadequate (10; 11; 23). 

The first section in this chapter presents the theory 

applicable to this investigation to provide a background for 

the model to be presented in Chapter III.  The second 

section reviews different counting strategies.  In the third 

section, the acceptance and criticisms of Halstead*s work 

are discussed.  Finally, the last section describes the 

application of Software Science theory to compilers. 

The Theory of Software Science 

Software science was developed to measure the properties 

of algorithms.  Halstead (11:5-6) defined four basic metrics 

that are capable of being counted or measured: 

nx   = the number of unique operators; (2.1) 
na = the number of unique operands; (2.2) 
Nx = the total number of occurrences (2.3) 

of operators; 
^>t Na = the total number of occurrences (2.4) 
HSJW of operands. 
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According to Halstead, operands are defined as the variables 

or constants that the implementation employs.  While 

operators are classified as the symbols or combinations of 

symbols, such as mathematical symbols, delimiters, 

punctuation symbols, et cetera that affect the value or 

ordering of an operand (11:5).  By counting the number of 

operators and operands or tokens in a program, software 

science attempts to measure the programming requirements, 

the initial error rates, the quality and the complexity of 

software, and the productivity of programmers (10:3-5; 11). 

Table 1 summarizes Halstead's measures which are relevant to 

this study. 

TABLE 2.1 

Halstead*s Software Science Measures (11:2) 

(1) ni = Unique Operators 
(2) na = Unique Operands 
(3) Vocabulary =n=ni+n3 
(4) Ni = Total Operators 
(5) Na = Total Operands 
(6) Length = N = Ni + Na 
(7) Est. Length = Nhat = (ni « loga(ni)) + 

(na * loga(na)) 
(8) Volume = V = N « loga(n) 
(9) Est. Volume a Vhat = Nhat * loga(n) 

(10) Potential Volume = V« = (2+na«)*loga (2+^«) 
(11) Level of Implementation = L = V« / V 
(12) Est. Level = Lhat = (2 « na) / (nx « Na) 
(13) Effort =B=V/L=V»/V, 
(14) Programming Time =T=B/S=V«/(S*V«) 

13 
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Using the basic metrics above, Halstead (10:5; 11:6) 

defined the vocabulary n of a program to be the total number 

of unique tokens: 

n = ni + na (2.5) 

and the length of a program to be the total number of 

operators and operands: 

N = Ni + Na. (2.6) 

• 

Halstead (10:6) hypothesized that the length of a program 

is a function only of the number of unique operators and 

operands.  Other characteristics of a program are defined 

using these basic terms.  Drawing on intuition, Halstead 

(2:774) used an analytical procedure and a probability model 

of software generation to predict the length of a program. 

Halstead determined that as a program with n unique and N 

total operators grows in size, by increasing the number of 

unique tokens, the total length will grow logarithmicly; 

n*logan.  Based on this conclusion, and that the length of a 

program is the sum of the operators and operands, Halstead 

(10:5-6; 11:9-11) defined the predicted length or the length 

estimator as: 

Nhat = (m * logani) + (na * logana). (2.7) 

14 
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The size or volume of a program may vary when translating 

Si*     from one language to another.  For example, converting a 

higher level language such as Ada into a lower level 

implementation code (machine language) requires more volume 

than translating a lower level language into a higher level 

language.  Higher level languages usually have more 

operators to allow for more compact expressions; and as a 

result, shorter programs.  Halstead (10:6-8; 11:19; 23:156) 

surmised that the volume of a program is a function of its 

vocabulary and is given by: 

V = N « loga(n), (2.8) 

# 
where V has a unit of measurement in bits.  In other words, 

logt(n) bits are needed for each of the N tokens in a 

program to choose one of the operators or operands for that 

token. 

Programs may be implemented by many different but 

equivalent codes.  When an algorithm is implemented in its 

most succinct form, then its potential volume V« (11:20-21; 

23:156) is 

V» = (2 + at«) « loga(2 + na«), (2.9) 

where na* is the number of input/output (I/O) parameters. 

This represents the size of the program if it existed as a 

built-in function or procedure call.  The constant 2 
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.». 
represents the minimum number of operators for any algorithm 

vys     to perform the function.  One operator is the name of the 

function or procedure and the other is an assignment or 

grouping symbol used to separate the list of parameters from 

the function or procedure name.  The variable n»« is the 

minimum number of unique operands (I/O parameters) needed to 

implement the function.  The value for na« is harder to 

obtain because what constitutes an I/O parameter may be 

difficult to conceptualize.  Halstead describes na' as 

follows: 

(1) The number of conceptually unique arguments 
and results (or input and output parameters) 
required by a given algorithm.  Therefore, it is 
only necessary to count the parameters listed in 
a call when an algorithm is Implemented as a simple 
procedure, or as a subroutine, and for which a call 
on that procedure has been written, and provided 
that result operand names are listed explicitly. 

(2) For the cases in which an algorithm is 
implemented as a straight routine to be executed 
directly, na* is determined by examining the 
implementation and by counting all the operands 
that are "busy-on-entry" or "busy-on-exit" of an 
algorithm from the implementation.  (11:28) 

According to Halstead (10:8-9; 11:25-30; 23:156), the 

level of implementation is defined as the ratio of potential 

to actual volume: 

L = V« / V, (2.10) 

where L is less than or equal to one.  The closer the volume 

V is to the potential volume V«, the higher the level.  The 

v£v    higher level languages such as Ada should have a value 

16 
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closer to one than a lower level language because the lower 

VC»*     level language usually requires more operators and operands 

to do the same Job.  Note also that the failure to use a 

language properly could result in a lower level of 

implementation and a higher volume. 

Halstead (10:9-10; 11:46-61) hypothesized that a program 

is generated by making N * log2(n) mental comparisons. 

Therefore the volume is a count of the number of mental 

comparisons required to generate a program.  Each mental 

comparison requires a number of elementary mental 

discriminations which are defined as the reciprocal of the 

level of implementation - 1/L.  Halstead then concluded that 

the total number of elementary mental discriminations or 

effort B required to generate an algorithm is given as: m 
B = V / L. (2.11) 

The effort of programming increases as the volume of the 

program increases and the effort decreases as the level of 

implementation increases.  In other words, the larger a 

program, the more difficult the effort; the higher the level 

of implementation, the easier the effort.  Recalling 

Equation 2.10, L = V« / V and substituting in Equation 2.11, 

the effort equation now becomes: 

B = V» / V«. (2.12) 

17 
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Equation 2.12 indicates that the effort required to generate 

a program with a given potential volume varies with the 

square of the actual volume in any language.  With this 

equation, Halstead determined the number of mental 

discriminations or decisions completed by a programmer when 

implementing an algorithm. 

As stated in the introduction, a major claim of software 

science is the ability to predict actual programming time. 

Halstead (10:9-10; 11:46-61; 23:157) determined that the 

amount of time required to implement an algorithm is 

directly proportional to the programming effort E divided by 

a constant 'S'. 

T = B / S, 

or 

T = V« / (S « V«), (2.13) 

where the constant 'S' represents the speed of the 

programmer or the number of mental discriminations per 

second of which the programmer is capable.  Halstead (10:9- 

10; 11:48-49; 23:157) called 'S' the "Stroud number" because 

a psychologist, J.  Stroud proposed that the human brain is 

able to make mental discriminations at a finite rate 

(between 5 and 20).  Halstead uses a value of 18 because in 

his experiments, 18 gave him the best results when comparing 

predicted versus actual programming time.  Software science 

hypothesizes that Equation 2.13 estimates the time required 

18 
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for a programmer to implement an algorithm under certain 

conditions (23:157): 

(1) A single, concentrating programmer, who is 

knowledgeable of the programming language; 

(2) Only a single module is written; 

and (3) The program must be pure (10:6; 11:38-45). 

Good programming practices usually insures a pure program. 

Halstead defined six impurity classes: 

1. CANCELLING of OPERATORS! The occurrence 
of an inverse cancels the effect of a 
previous operator; no other use of the 
variable changed by the operator is made 
before the cancellation. 

2. AMBIGUOUS OPERANDS: The same operand is 
used to represent two cr more variables in an 
algorithm. 

3. SYNONYMOUS OPERANDS: Two or more operand 
names represent the same variable. 

4. COMMON SUBEXPRESSION; The same subex- 
pression occurs more than once. 

5. UNNECESSARY REPLACEMENTS: A subexpression 
is assigned to a temporary variable which is 
used only once. 

6. UNFACTORBD EXPRESSIONS: There are 
repetitions of operators and operands 
among unfactored terms in an expression. (10:6) 

Review of Counting Strategies 

Since Halstead's theory is based on the counting of 

operators and operands within a program, a discussion of the 

method of recognizing and categorizing these tokens is 

appropriate.  As stated before, Halstead (11) defined 

operators as symbols or combinations of symbols that affect 

19 
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the value or ordering of an operand, and an operand is 

> *    defined as being a variable or constant. 

In a paper discussing Halstead's work, Elshoff (8:30) 

criticizes these definitions as not being specific enough 

and states that questions still remain about counting of 

operators and operands.  In another paper, Salt (21:59-60) 

echoes Elshoff's comments about ambiguity resulting from 

Halstead's definitions.  Salt cites the counting of the IF 

... THEN ... ELSE construct as an example.  One researcher 

considered this construct to be a single operator, but a 

second researcher claimed that the IF ... THEN and the ELSE 

were two distinct operators.  In yet another paper, Misek- 

Falkoff (18:86-88) offers another example that is not easily 

resolved by using Halstead's definitions.  That example is m 
X = Fl (F2 (Y) ), 

where F2 is an operator with respect to Y and Fl is an 

operator with respect to F2(Y).  It is unclear here whether 

F2 should be counted as an operator, as an operand or both. 

As pointed out by Beser (2:51), every experiment involving 

Halstead's work seems to use a counting strategy which is 

unique to that experiment.  This difference in counting 

rules used by various researchers make comparison of their 

empirical results a difficult job. 

Several experiments have beer conducted to determine what 

impact, if any, different counting strategies have on the 

I 
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software science metrics.  Elshoff (8:30,40) counted a 

collection of 34 PL/1 programs using 8 different counting 

methods and found that the effects of the various counting 

methods varied depending on the characteristics being 

measured.  Some of the metrics such as length, N, and 

volume, V, changed very little while level, L, and effort, 

K, varied significantly.  He concluded that although no one 

counting scheme could be shown to be the best, the results 

did indicate the importance of the counting method to the 

overall measurement of an algorithm.  In a separate study, 

Conte (5:118,126) modified Halstead's method of counting the 

GOTO construct.  His results showed that this modified 

counting strategy had minor effects on N, Nhat, and V, but 

that it had significant impact on m, Nj, Lhat, and B. 

In addition to the lack of consensus on how to count 

operators and operands, there is disagreement on what parts 

of a program should be included in this count.  Halstead 

contended that declarative statements should not be included 

in the counting process and most research (13:59) has 

followed this lead.  However, Kavi and Jackson (13:57,71) 

conducted an experiment with 'C language programs in which 

declaration statements were included in the operator and 

operand count.  They justified this departure from the 

normal practice by contending that declarative statements 

are an important part of an algorithm in most programming 

languages, and to a certain extent they determine the 

v'v     structure and complexity of programs.  They state that this 

21 
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line of thought is in accordance with the accepted belief 

that "Algorithms + Data Structures a Programs".  From this 

point of view, the "algorithm" is the part of the program 

that is typically counted and the "data structure" is the 

declarative part that typically is not counted. 

Salt (21:60) seems to convey the contemporary view on 

counting strategies when he says: 

There is clearly a need for more information about 
counting strategies in research papers.  Certain 
aspects of the strategies require special attention. 
Although short descriptions of operands are accept- 
able, the same cannot be said about operators. 
Comprehensive descriptions of operators are required. 
General statements to the effect that operators are 
comprised of reserved words and special symbols are 
inadequate.  Such statements leave too many unanswered 
questions.  In PASCAL for example, is the reserved 
word NIL an operator?  Particular attention is also 
required in the consideration of symbols with more 
than one function.  For example, in FORTRAN, a set of 
parentheses may be used to delimit expressions, 
arguments, or subscripts.  A counting strategy must be 
clear about how many unique operators are involved. 

At this point, the presentation of Halstead's theory of 

Software Science ends and a review of the published findings 

begins. 

Acceptance/Criticisma of Halstead's Software Science Theory 

To become an effective tool for software engineers, 

Halstead's theory on Software Science must accurately 

predict information about a software project before the 

coding stage.  Halstead (11:51-53) investigated the 

predictive power of his formulas by asking a computer 
•y. 

scientist, who was fluent in three languages (FORTRAN, PL/1, '.'': 
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and APL), to program, in each of the three languages, 12 

algorithms from the Communications of the Association for 

Computing Machinery.  Using the software science equation in 

estimating programming time, Halstead predicted the time for 

the programmer to finish the Job.  The relationship between 

actual vs predicted programming time was very strong - a 

correlation of 0.94.  The actual programming time was 14.68 

hours, which compared well with the predicted time of 15.45 

hours. 

In another experiment, R. D. Gordon (10:11-13) measured 

the number of minutes needed to implement a program fully; 

this included the time to read the problem statement, to the 

finished product with no errors.  The predicted time was 

within 3 percent of the actual total time with a correlation 

coefficient of 0.934. 

Research conducted by the Computer Center of Purdue 

(11:14) observed that Halstead's work can predict the length 

of programming time, number of programming errors, and the 

quality of the final programs.  Other independent 

statistical studies conducted by Kerlinger (10:10), Campbell 

and Standley (10:10), and Elshoff (11:14-16) have tested 

Halstead*s forumlas with impressive results, thereby 

enhancing the validity of his works. 

A. Fitzsimmons and T. Love (10:10-17) discovered a 

pattern in all the experiments they reviewed concerning 

software science.  This pattern seemed to indicate that 

w^4    there is a correlation of the effort measure with many 
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factors that affect programming projects such as programming 

time.  Software science may be a possible tool to answer the 

questions considering the difficulties of programming and 

the causes of high software cost. 

Although early studies have shown impressive results, 

software science has not been universally accepted (23:157- 

164) and is not being widely used outside the academic 

arena.  Some have questioned the validity of the 

experimental data.  In most cases, the sample size and 

programs were small.  The experiments did not involve 

professional programmers, but a few college students who may 

not represent the typical programmer.  The assumption that 

the human brain is capable of making a constant number (S) 

of mental discriminations per second is questionable 

(23:158; 6).  Few psychologists today agree with the 'Stroud 

number' because of lack of empirical results. 

As mentioned in section two, defining and counting 

operators and operands has been a major issue of concern 

because these tokens are the basic foundation of software 

science (23:157).  The results of the experiments may depend 

on these definitions.  For example, Halstead ignored the 

declaration section and other nonexecutable statements of 

the algorithm.  Some have argued that nonexecutable code is 

a major part in determining programming time and must be 

counted.  To make matters worse, classifying a token as an 

operator or operand may not be clear.  The meaning may 

depend on the use of the token at execution time, i.e. a 
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function name may serve as both an operator and operand. 

Others have also suggested grouping operators, because 

different operators have different impacts.  These 

ambiguities in interpretation of operators and operands may 

result in different values for some of the software science 

metrics (see Appendix A for an example of two counting 

schemes).  Therefore, a standard counting strategy needs to 

be developed for languages in order to make valid and 

consistent decisions from the experiments; otherwise, 

experimental results will continue to vary and prove to be 

useless for project managers. 

R. Wolverton noted (26:484-485) that Halstead's work is 

too advanced to be any practical use in estimating software 

production; however, if Halstead's theory is properly used 

and understood, it might be useful at some future time. One 

possible application is applying his theory to explain the 

compilation effort resulting in a performance metric which 

researchers could use to evaluate different compilers. 

An Application of Software Science to Compilers 

Although Halstead developed his model in an attempt to 

predict, among other things, the amount of time it will take 

for a computer programmer to write a given routine, it may 

also be useful to predict the time required for a 

compilation of that same routine.  This section discusses, 

in general terms, the components of a compiler and the steps 

involved in the compilation process.  Further, it 

25 
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demonstrates that the compilation process and the process of 

a programmer writing a program are similar enough that it is 

reasonable to investigate the ability of Halstead's model to 

predict the time required to compile a given routine. 

A compiler can be defined (24:5) as a translator which 

transforms a high-level language such as FORTRAN, PASCAL, or 

COBOL into a particular computer's machine or assembly 

language.  A programmer can also be thought of as a 

translator because he transforms an English language problem 

statement into a high-level source language that can then be 

processed by the compiler. 

A compiler has two major phases (24:6-11): analysis of 

the source program and synthesis of the object code for that 

program.  Fig. 2.1 depicts this structure as well as the 

major sub-phases involved.  This structure may vary between 

individual compilers and between compilers for different 

languages, but it is representative of a generalized 

compiler. 

Analyala Phase.   The major function of the lexical 

analyzer is to scan lines of the source program and separate 

the text into a sequence of tokens such as constants, 

variables names, reserved words, operators, and punctuation. 

This sequence of tokens is then passed to the syntactic 

analyzer which groups the tokens into larger syntactic 

classes such as expressions, statements, or terms.  If the 

syntax analyzer determines that the token sequence is not 
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Fig. 2.1 Components of a Generalized Compiler. (24:6) 

syntactically correct, it generates an error message.  If 

the sequence is in the correct format, a syntax tree or 

equivalent structure is built for that sequence.  The syntax 

tree is then passed to the semantic analyzer.  The semantic 
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analyzer determines what actions are being requested.  The 

semantic analyzer may produce some form of intermediate 

source code which will be passed to the synthesis phase of 

the compiler.  Several structures, such as a symbol table, 

are built during the analysis phase of the compile process. 

A programmer goes through similar steps in preparing to 

write a program, although in reality he probably performs 

them in parallel rather than serially as the compiler does. 

His lexical analysis probably will not break the problem 

statement down to the level of individual tokens, but he 

will break it down into paragraphs, sentences, and phrases 

to generate ideas and concepts about the structure of the 

problem that is to be solved by his program.  The 

programmer's final step in the analysis phase is to perform 

a semantic analysis to understand exactly what the problem 

statement is asking for.  As in the compiler process, tables 

and other structures mty be built to aid in completion of 

the overall task.  Logic diagrams, truth tables, and 

flowcharts are examples of these structures. 

Synthesis Phase.   The code generator, the first step of 

the synthesis phase, translates the data received from the 

analysis phase into either assembly language or machine 

language.  In more sophisticated compilers, the output of 

the code generator is passed to a code optimizer where the 

code is evaluated to determine if it can be restructured to 

V^    make it more time or space efficient. 
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A programmer also takes the results of his analysis phase 

^     and generates an output, the high-level language program. 

He may then analyze his program, much like a code optimizer 

would do, to see if some of it may be implemented more 
■ 

efficiently. In the case of the programmer, the search for 

efficiency is probably on-going during the entire synthesis 

phase. 

Conclusion.   There is not a one-to-one correspondence 

between all actions taken by the compiler and the 

programmer, but there are certain parallels.  Both must 

input data, analyze that data to determine its validity and 

meaning, and determine what action that data is requesting. 

They both must generate a product, in a language different 

than that of the input data, that conveys the same 

information as the input data.  Because the programaing 

process and the compilation process have a number of 

similarities, it seems reasonable to expect that Halstead's 

model might predict compilation time. 

Programming time may vary depending on the programmer's 

well being, state of mind and many other factors.  As a 

result, the value of 'S' in Halstead's time equation, 

T = V* / (S * V*), is questionable since a programmer's 

discrimination rate or programming speed may vary day to 

day.  In contrast, compilation time is solely based on the 

host computer and the program to be compiled.  Therefore, 

'V -■ 
'^\     the discrimination rate or, in this case, the translation 
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rate or processing speed of a compiler may be more 

deterministic.  Consequently, an extension of Halstead's 

model may predict compile time even better than it predicts 

programming time. 

Having presented the theory behind this thesis effort, 

the research methodology can now be presented. 

# 
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ill. Research Methodology 

The extension of Software Science theory to a compiler is 

straight forward.  Like a programmer, a compiler translates 

a language from one level to another.  Consequently, it 

seems reasonable to apply a form of Halstead's programmer 

time equation to predicting the compilation time for a 

compiler.  If a mathematical model can be developed, an 

important role for the compiler performance model would be 

to predict the compilation time for compilers.  However, 

even more beneficial, would be the ability of the model to 

compare performance rates of various compilers. 

This chapter describes the methodology involved in 

analyzing software science as a possible tool for explaining 

compiler time and for the development of a performance 

index.  The first section presents the mathematical models 

investigated in this research effort.  The second part 

describes the experimental design to validate the extension 

of software science to compilers. 

Model Propoaala 

Software Science theory served as the basic theoretical 

framework for predicting compiler time.  Three mathematical 

models for predicting compiler time will be presented; 

first. Model 1 based on the time equation; second. Model 2, 

a linear model based on program length; and finally, Model 

3, a non-linear -»odel based on program length.  Model 1 
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utilized program volume and potential volume Just as 

Halstead envisioned.  Models 2 and 3 made use of Halstead's 

definition of length as defined in Chapter II.  Although 

length is not part of Halstead's theory for predicting time, 

length is a common complexity measure used in estimating 

time to complete a task.  Therefore, Models 2 and 3 were 

investigated for the purposes of comparing the predictive 

power of these models to Model 1.  It is assumed for all 

models that a program to be compiled is syntactically 

correct and the program length, N, is greater than zero. 

All the models were analyzed to determine which, if any, 

were best suited for predicting compile time. 

(fs Uad&LJL -  Llaiag. Software Soiencg 11ms. Equation» Model i 

used Halstead's programming time equation as the basic 

theoretical model.  The equation was specified as a set of 

independent variables related by a set of parameters to be 

estimated.  The dependent variable is the actual CPU time 

required for the compilation process.  The volume, V and 

potential volume, V* are the independent variables. 

Referring to the Time Equation 2.13, 

T = V« / (S « V«), 

and placing it in parameter form yields: 

m T = K » V« « (V»)«» (3.1) 
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This equation is exactly the same as Halstead's time 

equation if *K* is a fraction, 'a' is 2,   and 'b' equals -1. 

'K' has the same meaning in the compilation process as the 

constant 'S' in Halstead's equation for predicting 

programmer time.  'K' represents how fast the compiler does 

its Job (the processing rate) or its discrimination rate. 

'K' will depend on the computer architecture and the 

efficiency of the compiler itself.  Clearly 'K' can be 

interpreted as a performance index given that 'a' and 'b' 

are known.  Or, 'K' can be used in an estimation role to 

distinguish compilers. 

Model 2 - IdHULtk: ü (linearK  It seems reasonable to 

assume that the more operators and operands in a program, 

the more time the compiler must expend on resources.  This 

linear relationship can be shown as follows: 

T = a « N, (3.2) 

where "T* represents compilation time and 'a' is some 

constant multiplier.  As in Model 1, the dependent variable, 

'T', is the actual CPU time required for the compilation 

process.  However, in this case, the independent variable is 

the length, N. 
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Model 3 - li£ii£Üi: ü (non-linear) »  Compile time may not 

behave In a linear fashion as a function of length.  A 

common complexity measure for determining programming time 

Is lines of code (LOG).  "It Is generally accepted that a 

program requiring more lines of code will take 

'proportionally' longer to Implement than another program 

requiring fewer lines" (21:160-161).  It then seems logical 

that compiler time would behave In the same manner - the 

longer the program, the longer the compiler time.  To relate 

the lines of code measure to actual programming time, a 

formula of the following type (21:160-161) can be derived 

using regression analysis: 

T = a « LOC«>. 

Using the same logic and replacing LOG with Halstead's 

definition of the length of a program, the model now 

becomes: 

T a K « N*. (3.3) 

where T represents compiler time.  Again, the dependent 

variable Is the actual GPU time required to complete the 

compilation process.  As In Model 2, N Is the Independent 

variable related by a set of parameters to be estimated. 
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Uaing Parameter Eatimatea.  Halstead envisioned that 

obtaining the actual counts for some algorithms may be 

difficult or impractical.  Therefore, Halstead defined 

estimators for certain parameters such as the length of an 

algorithm.  Consequently, Halstead's measures can be divided 

into calculated and estimated equations.  To determine the 

effect of these estimators, each model described above had 

two cases: one based on the calculated, and the other based 

on the estimated values.  In Model 2 and 3, N was replaced 

with Nhat and was calculated using Equation 7 from Table 

2.1.  Model 1, Equation 3.1, replaced V and V« with Vhat and 

Lhat from Table 2.1 where 

1) Vhat = Nhat « loga(n), 

and 2) Lhat = (2 « n») / (m » Na). 

The Experiment Dcaign 

The experiment required a rich set of algorithms written 

in Ada.  Next, the various software science measures 

described in Chapter II were calculated.  This required the 

identification and enumeration of each operand, operator, 

and I/O variable in each program.  The programs were then 

compiled on four computers using different compilers and the 

time to compile was recorded.   The model equations were 

transformed to the linear models.  Then using linear 

regression techniques in the SAS program package, the models 

were analyzed. 
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Data Selection.  For the purpose of this investigation it 

was desirable to select a database that would guarantee that 

the results were statistically valid.  Therefore, the 

desired approach was to use published or production 

software.  The ACEC's programs seemed to be the perfect 

candidate for this study since DoD sponsored the creation of 

this benchmark test suite to validate and evaluate Ada 

compilers. 

ACEC consists of a series of public domain test programs 

collected by the Ada E&V team for the Ada Joint Program 

Office.  The programs provide information about language 

features that must be present in a compiler if it is a full 

implementation of the ANSI/MIL-STD 1815A. (12:3) 

A copy of the ACEC test suite was obtained from SofTech, 

Inc., at the address below, who was contracted by the Air 

Force Wright Aeronautical Laboratories to distribute the 

programs. 

SofTech, Inc. 
Attn: Mr. Michael C. Hill 
3100 Presidential Drive 
Fairborn, OH 45324-2039 

Approximately 300 modules currently exist in the test suite. 

The programs are divided in two categories called normative 

tests and optional tests.  The normative tests (12:3) j 

'!yC"/     provide a means for determining system cost for a particular 

language feature, that is, collecting information on the 
r 
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speed, space and the limitations of the Ada compiler.  On 

the other hand, the optional tests (12:4) provide 

measurments of features that are not a required part of the 

Ada compiler. 

Of the 300 test programs, 171 were selected for this 

investigation.  Programs were eliminated if they included 

pragmas, or they were similar to other modules, i.e. the 

vocabulary and length were the same. 

Identification/Enumeration of Operands. Qperatora. and 

I/O Parameters.  Before any data could be analyzed using the 

software science metrics, a suitable set of rules for 

counting operators, operands, and I/O parameters had to be 

devised.  In Halstead's original work, only executable 

operands and operators were counted because the theory was 

intended to analyze algorithms, not programs.  However, a 

compiler must process all the tokens (operators/operands) in 

a program and can expend substantial resources translating 

data types, declarations, tasks, etc.  Therefore, in this 

investigation, the counting strategy had to be expanded to 

include all tokens.  Due to the importance of the operator 

and operand counting definitions, the counting strategy 

implemented is summarized in Table 3.1.  See Appendix B for 

examples of counting Ada programs.  For a detailed 

description of this strategy, refer to Captain Maness's 1986 

thesis (17) on validating an extension of Halstead's theory 
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TABLE 3.1 

ADA COUNTING STRATEGY 

1. All entities in a module are considered, except 
comments. 

2. Variables 1 constants, literals are counted as operands. 
Local variables with the same name in different 
procedures/functions are counted as unique operands.  Global 
variables used in different procedures/functions are counted 
as multiple occurrences of the same operand. 

3. The following pairs of tokens are counted as single 
operators: 

And Then        Array Of Begin End 
Body Is Case Is When End Case 
Declare Begin End Do End 
Elsif Then       Exception When For In Loop End Loop 
For Use Function Return If Then End If 
Limited Private  Loop End Loop Or Else 
Record End Record Select End Select  Subtype Is 
While Loop End Loop 

4. The following tokens or pair of tokens are counted as 
single operators subject to the accompanying conditions: 

+  is counted as either a unary + or binary ♦ depending on 
its function.  A unary + is not counted when it is a 
part of a numeric constant like +3.14. 

is counted as either a unary - or binary - depending on 
its function.  A unary - is not counted when it is a 
part of a numeric constant like -2.15. 

( ) is counted as either (1) an expression grouping 
operator, as in '(x+y)/z, (2) an invocation 
operator, as in xx :s SQRT(a), (3) a declaration 
operator, as in Procedure xx (a:in real), (4) a 
subscript operator, as in x = I(J), (5) a 
dimensioning operator, as in k : array (1..6) of real, 
(6) an aggregate operator, as in x : f_type := 
(others «> ' *),   (7) an enumeration operator, as in 
type color is (red,green,blue), or (8) a conversion 
operator, as in int := integer(real_variable). 

'   (apostrophe) is counted as either (1) an attribute 
operator, or (2) an aggregate operator. A pair of 
apostrophes used in character constants, such as 'x' is 
counted as a single operator. 
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Table 3.1 

ADA COUNTING STRATEGY (cont-) 

in       is counted as either (1) a mode operator»or (2) a 
membership test operator. 

or      is counted as either (1) a boolean operator, or 
(2) an alternative operator in select statements. 

null is counted as either (1) an operator if it appears 
in executable code, or (2) an operand when used as 
a constant. 

private is counted as either (1) a declaration operator, or 
(2) a detail operator. 

separate is counted as either (1) a declaration operator, or 
(2) a detail operator 

5.  The following tokens are counted as single operators if 
they are not used in rules 3 and 4: 

« / «« & • • 
• • • • • 

» /= < > 
<> ■ = > > = < = • • 

<<>> 
»t n 

* * abort abs 
accept access all and at constant 
delay delta digits else end entry 
exception exit generic goto is 
mod new not out others package 
procedu re raise range rem renames 
return reverse task terminate type 
use with when xor 

6. Procedure and function calls are counted as operators. 
Also nested function and procedure calls are counted as 
operators. 

7. Type indicators are counted as either (1) an operand in 
its own declaration statement, or (2) an operator if it 
types a variable, function, or subtype. 

8. 'Package/Procedure/Function Is New' is called a generic 
instantiation operator and is counted as one unique 
operator. 

9. I/O Parameters are either (1) formal parameters within a 
subprogram specification, (2) function names, or (3) 
parameters that are passed globally and referenced within a 
module. 
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to Ada compilers.  He includes the logic behind the 

development of this strategy, including how input and output 

parameters were counted. 

Once the rules were established, the next step was 

obtaining the values of the software science parameters. 

Therefore, each program was counted manually to determine 

ni, na, n»«, Ni, and Ni.  The number of unique and total 

occurrences of tokens in each program were recorded on a 

data sheet (see Appendix C).  Since manual counting is prone 

to error, the programs were counted twice.  Capt Maness 

helped in the counting since he used the same data in his 

study.  Appendix D summarizes the results of this effort. 

Computer/Compiler Selection.  Selection of a computer had 

to meet two criteria: 1) the computer had to be located on 

Wright-Patterson Air Force Base and be accessible for this 

research; and 2) a validated Ada compiler had to be 

available for the selected computer.  As a result, four 

computers were selected: 

1) The AFIT Academic Support Computer (ASC), a VAX 11/785 

computer using the Verdix Ada compiler. 

2) The AFIT Information Systems Laboratory (ISL), a VAX 

11/780 computer using the Digital Equipment Corporation 

(DEC) Ada compiler. 

3) The AFIT Classroom Support Computer (CSC), a VAX 

11/785 computer using the DEC Ada compiler. \ 
B 
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4) The ASD Information Systems and Technology Center, a 

Data General (DG) MV-8000-II computer using the ROLM/DG Ada 

Development Environment (ADE) compiler. 

Procedures for gaining access to these resources are 

described in Appendix E. 

Computer Environment. The ASC is a multi-user system 

located in the School of Systems and Logistics.  It is a VAX 

11/785 computer running the Berkeley 4.2 UNIX operating 

system.  The hardware configuration consists of one 800/1600 

bpi tape drive, three 456 megabyte disk drives, and one 

electro-static printer/plotter.  The central processing unit 

is 32-bit with main memory consisting of 8 megabytes. 

Currently, version 5.1 of the Verdix Ada Compiler is 

installed on the system.  The system supports 32 user 

terminals and 10 remote user terminals.   Peak load occurs 

during the day from 0900 hrs to 1800 hrs with an average of 

20 users.  During 0200 hrs to 0600 hrs the load drops to an 

average of 2 users. 

The DG MV/8000-II computer system is managed by the 

Language Control Branch, located in the ASD Information 

Systems and Technology Center (ASD/SI).  The central system 

consists of a 32-bit central processing unit with 8 

megabytes of real memory.  Secondary storage devices include 

two 354 megabyte fixed disk drives and two 800/1600 bpi tape 

^s* drives.  Listings can be printed on a 600 1pm printer.  The 
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^      system currently supports 24 user terminals operating under 

'v      the AOS/VS version 5.6 operating system.  Version 2.30 of 

the Ada Development Environment including the 

ANSI/MIL-STD-1815A version 2.30 Ada compiler is installed to 

support the development of the Ada programs.  This computer 

is mainly used for programmer training and evaluating Ada 

programs.  System usage varies from 0 users to 10 users. 

The computer is idle most of the time. 

The ISL computer is housed in room 245 in building 640, 

the School of Engineering.  This VAX 11/780 computer is a 

32-bit machine with 8 megabytes of main memory.  The 

hardware configuration includes a 1600 bpi tape drive, three 

500 megabyte fixed disk drives, a 250 megabyte Winchester 

drive, a x-y plotter, and a laser printer.  The system 

currently supports 16 user terminals and one remote user 

terminal operating under VMS version 4.4 operating system. 

Version 1.2 of the DEC Ada compiler is installed on the 

system.  Since this computer is mainly used for research, 

usage varies like the DG computer. 

Finally, the CSC, located in the School of Systems and 

Logistics, is a VAX 11/785 computer running version 4.3 of 

VMS operating system supporting 32 user terminals and 10 

remote user terminals.  This system contains an 800/1600 bpi 

tape drive, a 600 1pm printer, two 456 megabyte disk drives, 

one 256 megabyte disk drive, and 8 megabytes of main memory. 

The DEC Ada Compiler, version 1.2, is installed on this 

W     system.   Like the ASC, the CSC is a busy system supporting 
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varies from an average peak of 20 users during the day down 

to an average of two users in the early mornings. 

Compiler Time Meaaurenenta» A major issue in this study 

was measuring the time of the compilation process for a 

program as accurately as possible.  On a multi-user system, 

compilation time cannot be measured simply by a stop watch 

because of the contention with other users.  As a result, 

CPU time instead of wall clock time was used.  The CPU times 

for the DG, ISL, and CSC were obtained by looking at the 

list or history file generated during the compilation 

process.  Besides giving information about the compilation 

of a program, the file contained the amount of CPU time and 

wall clock time used to complete the compilation process. 

Although the ASC Ada compiler generated a similar file, the 

amount of time used was not given.  Consequently, another 

method had to be devised.  In this case, the UNIX system 

command 'time' was used which provided information on the 

total CPU time to complete a process. 

Having each computer dedicated to this experiment would 

have been ideal.  Since this was impossible, the programs 

were compiled three times each during a period when the 

number of users/processes on the computers were at the 

lowest.   Therefore three experimental replications were 

completed.  The results of this effort is summarized in 

Appendix F. 
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The ACEC benchmark test suite required the programs be 

compiled in a certain order as shown in Fig. 3.1.  As 

indicated by this figure, the test routines required the 

programs lO^PACKAGE, CPUJTIME, and INSTRUMENT, repectively, 

to be compiled before the test routines.  These modules are 

library packages used by the benchmark test modules. 

During the initial checkout to make sure the programs 

compiled on each computer, it was discovered that the time 

to compile would increase as the library size increased.  As 

much as five seconds could be added to the CPU time if a 

program was compiled last instead of first.  Therefore, to 

have the same environment for each benchmark test program. 

LISTJV ICKAGE 

SCHI 

/ 

DATABASE     A 

\ 
U 

•M 

\ 

m 

NQ 

K 

\ 

RIBUTE          IO PACKAGE     CPU TIME 

/ \/ 
UIRY                               INSTRUMENT 

1 
1 

REPORT_WRITER 
1 

BENCHMARK TESTfr) 

(eg. ADDSA1) 

Fig. 3.1 ACEC Compilation Order (12:11) 
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the newly compiled teat module was deleted from the library 

each time before the next compilation began.  The programs 

were all compiled in batch mode.  Basically, the batch Job 

for each system consisted of the following: 

1) Clean library directory - only the standard Ada 

library routines were presented at this time. 

2) Compile in order IO_PACKAGE, CPUJTIME, and 

INSTRUMENT. (Note: compilation times for these programs were 

recorded) 

3) Compile one benchmark test module such as 

ADDSA1, BALPA1, etc. 

4) At the completion of the compilation process for 

the benchmark test module, delete all files generated, 

except the file containing the CPU times. 

5) Repeat 3-4 until all programs are done. 

6) Clean all files generated during the compilation 

except the standard Ada library routines. 

7) Compile in order the following routines: LIST_ 

PACKAGE, SCHEMA, DATABASE, ATTRIBUTE, IO_PACKAGE, INQUIRY, 

and then REPORT_WRITER. (Note:  These programs are not part 

of the benchmark test programs but provide the user the 

means of collecting statistics for the test suite.  In this 

study SCHEMA, DATABASE, ATTRIBUTE, IO_PACKAGE, INQUIRY, and 

REPORT_WRITER are part of this database to be analyzed. 

LISTJPACKAGE was not included because it contained pragmas 

but it had to be compiled for use in the other programs.) 

8) Repeat step 4. 
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All compilation times were than recorded, and the files 

v' containing the CPU times were deleted.  Then steps 1 thru 8 

were repeated two more times.  Since each compiler has its 

own method of interacting with the user and the host 

operating system, the environment for each system is 

described below. 

UNIX Environment.   To be properly set up for running 

the Verdix Ada compiler on the ASC, the '.login' file must 

contain the path /usr/local/verdix5.1/bin.  A test directory 

containing all the programs to be compiled was created. 

Each program needed a '.a' suffix for the compiler to 

recognize the source code to be compiled.  The 'a.mkllb' was 

used to make an Ada Library directory in the test directory. 

This utility created the necessary files and subdirectories 

where all files created and modified during the compilation 

process are placed.  To compile all the programs in batch a 

shell script named 'compile' was created as follows: 

clrall 
time ada -v io_package.a 
time ada -v cpu_time.a 
time ada -v instrument.a 
time ada -v addsal.a 
clr 
time ada -v <program>.a 
• 
clr 
• 
time ada -v whlpa2.a 
clrall 
time ada -v list_package.a 
• 
time ada -v report_writer.a 
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To save time, two directories were created - one with 

just the standard Ada library routines, the other containing 

the standard Ada library routines and the library routines 

for IO_PACKGE, CPUJTIME, and INSTRUMENT.  The 'CIT .. 1' file 

(see Appendix G) is a script file which removes the file in 

the Ada library directories and moves a copy of a clean Ada 

library directory to the test directory.  The 'clr' file 

(see Appendix G) also deletes the files in the Ada library 

directories, but moves a copy of the other directory after 

each benchmark test program is compiled in the test 

directory.  The 'time' command records the time to complete 

the compilation process.  The total time was determined by 

adding together the system and user time. The 'ada -v' 

m£:ji commmand invokes the compiler and records a history of the 

compilation process. 

To execute the shell script 'compile' in batch, the 

following command was entered: 

compile >& acec.compile & 

where acec.compile contains the history and times of the 

compilation process. 

AOS/VS Environment.    The DG ADE compiler interacts 

with the AOS/VS operating system through the Ada Development 

Environment.  The Ada Development Environment was entered by 

typing 'enter'.  Some preliminary steps were required before 

compiling a program.  The first step was to create a project 
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clrall 
ada LIST_PACKAGE 
ada SCHEMA 

ada REPORT_WRITER 
clr 

*1 

directory by entering 'PROJCREATE'.   This created the Ada 

directory where the source code (.ada suffix) was stored and 

the compilations were done.  Next, the Ada library (.lib) 

file and the library searchlist (.Isl) file was created with 

the 'LIBCREATE' command.  These commands were executed just 

once. 

In this environment, all Ada compilations had to be done 

in BATCH.  Therefore, a macro called 'compile.cli' was 

created to execute all the compilations in one Job. 

COMPILE.CLI MACRO: 

ada IOJPACKAGE 
ada CPUJTIME 
ada INSTRUMENT 
ada ADDSAl 
clr 
ada ADDSA2 

The compiler was invoked by entering 'ada*.  The 'clr' and 

'clrall' macros (see Appendix G) removed the newly compiled 

Ada programs except for the history file and returned the 

environment back to its original condition. 

The compile macro was executed with the 'BATCH* command W 

as follows: m 

BATCH compile C^ 
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VMS Environment.  As Indicated before, both the ISL 

and CSC compilers interact with the VMS operating system. 

For these systems, the first step was to create an Ada 

program library directory where the compiler stores the 

files resulting from successful compilations.  This was done 

by entering ACS CREATE LIBRARY [<MYDIRECTORY>.ADALIB].  Once 

this step was completed, it was not repeated.  All newly 

compiled Ada programs, packages, and procedures are held 

here.  Next, the current working library was defined by 

entering ACS SET LIBRARY [<MYDIRECTORY>.ADALIB] because a 

user may have multiple libraries in a directory.  The 

compiler was invoked by entering ADA/<options> FILE_NAME. 

Each program to be compiled must have a '.ada* suffix. 

To execute the compilation process in batch a macro 

called 'compile.com' was created.  In this case, the macro 

consisted of the following: 

$ acs set library [mydirectory.adalib] 
$ ada/nooptimize/nocopy_source/nodebug/nonote. 

source/lis cpu_time 
$ ada/nooptimize/nocopy_source/nodebug/nonote. 

source/lis IO_PACKAGE 
$ ada/nooptimize/nocopy_source/nodebug/nonote. 

source/lis INSTRUMENT 
$ ada/nooptimize/nocopy_source/nodebug/nonote. 

source/lis ADDSA1 
$ acs del unit ADDSA1 

$ acs/nooptimize/nocopy_source/nodebug/nonote. 
source/lis WHLPA2 

$ acs del unit WHLPA2 
$ acs del unit IO_PACKAGE 
$ acs del unit CPUJTIME 

>■>:. $ acs del unit INSTRUMENT 
% $ acs del unit ICS 

$ acs del unit HPSORT 
49 
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$ acs del unit XO* 
$ ada/nooptimize/nocopy_source/nodebug/nonote__ 

source/lis LIST_PACKAGE 
• 

$ ada/nooptiinize/nocopy_source/nodebug/nonote_ 
source/lis REPORT_WRITER 

$ acs del unit singly_linked_list 

$ acs del unit REPORT_WRITER 

For this system, the compiler defaults to certain 

switches including optimization.  Therefore, the above 

switches were set for the compilation including no 

optimization in order to have similar processing for each 

compiler.  The 'acs del unit' command deletes the newly 

compiled program from the library. 

Submitting a job in batch was accomplished by entering 

the following command: 

submit/after=<date:time> compile 

Statistical Analysis.  The analysis of variance method 

and the linear regression tool on the SAS software package 

(22) was used to analyze the models and eventually answer 

the objective of this investigation.  The data obtained in 

this study was used to test two hypotheses: 

I 
/, 

1)   There is no significant difference in the predictive '^j 

ability of Software Science in explaining compile time H n 
across alternative Ada compilers. 'A 

I 



V3 

^t^' 

2) There is no significant difference in the 

discrimination rate across alternative Ada compilers. 

Consequently, the analysis was divided into two parts. 

The first part investigated the model proposals and 

determined their explanatory power for various Ada 

compilers.  Then Model 1'a predictive power was analyzed. 

The second part investigated the development of a 

performance index to compare the speed of various Ada 

compilers. 

Based on the set of data shown in Appendices D and F, the 

estimation of parameters was accomplished by specifying a 

regression equation with certain assumptions (18:408): 

1) Error is a random variable that enters in the model 

in an additive fashion. The probability distribution of the 

error is normal with a mean of zero and a finite constant 

variance. 

2) The error associated with one value of compile time 

has no effect on the errors associated with other compile 

time values, that is, the errors are independent. 

The regression equation for Model 2 takes the form: 

T = a « N. 
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Note that Model 1 and 3 are non-linear, and therefore had to 

be linearized for linear regression analysis.  This can be 

done easily by taking the natural logarithms (Log) of both 

sides of the predicting equations.  As a result, the 

regression equation for Model 1 now becomes: 

Log T = Log(k) *  a«Log(V) + b«Log(V>), 

and Model 3 yields: 

Log T ■ Log(k) -1- b»Log(N). 

Now the estimates of the unknown parameters for all the 

models can be calculated. 

The data in Appendices D and F was first placed in a SAS 

data file as shown in Appendix H.  Once this was done, a SAS 

command file containing the procedure to run regression 

analysis was generated/executed to analyze the above 

equations.  A sample command file is contained in Appendix 

I.  Then the various models' explanatory power, measured by 

the linear model coefficient of determination, were compared 

to each other.  Next, Model l*s actual vs predicted compile 

times and correlation coefficients for each computer were 

investigated. 

The next stage in analyzing the data involved determining 

if a performance index could be developed for the compile 

time prediction model (Model 1) based on Halstead's time 
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equation.  For this analysis, dummy variables were used.  A 

w^    dummy variable is a simple way to observe the effect of each 

compiler and to analyze each compiler separately while 

maintaining the same exponents for volume and potential 

volume.  In this case, two dummy variables (C,D) were needed 

to represent four compilers.  As a result, Model 1's new 

regression equation becomes: 

Log(T) = Log(K) + a«Log(V) + b*Log(V«) + e«C + f*D, 

where e and f are the estimated values of the dummy 

variables that are added to the estimate of 'K'.  The values 

of the dummy variables (C,D) were (0,0), (0,1), (1,0), and 

(1,1), where 

(0,0) - Unix System 

(0,1) - AOS/VS System 

(1.0) - VMS-ISL System 

(1.1) - VMS-CSC System. 

WD 

Therefore, if e and f equals 2 and 3, respectively, then 0 

would be added to the constant 'K' in the Unix system, 3 

would be added to the AOS/VS system, 2 would be added to the 

VMS-ISL system, and finally, 5 would be added to 'K' in the 

VMS-CSC system. 

The composition of the SAS data file from part 1 had to 

be changed for this analysis.  Instead of 171 observations, 

«/£.>•     the new data file contained 684 observations where the 

53 

t* '. '-• .■ V V V V '.'*.(•>' V '«■ V '«•■''.-^r V V 'n~'s V «"^^ V .* V 



pjTi^^'^TTT'^T^ ^^^^, w^-^ -7^-?^jvi^wriüTn?v^^VTn.-H ir*.T>.-- v "ii L^ \r* U~TI. &T\"W k-» if; 

compile times for each computer were aggregated in one 

column as shown in Appendix J.  Also, two more columns were 

added for the dummy variables.  Then, as before, a command 

file was generated/executed to determine if a performance 

index could be developed to compare the processing speed of 

various Ada compilers (see Appendix K). 

Having presented the research methodology behind this 

investigation, the results can now be presented. 

£* ^T^* 
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IV.  Teat Results and Discusaion 

As stated in Chapter III, the regression analysis tool 

in the SAS data analysis package was used in this 

investigation.  This tool provided several statistical 

measures including the strength and the estimated parameters 

for a model.  Appendix L gives a sample output from this 

tool and explains how a model is formulated using this 

output. 

To demonstrate the feasibility of using an extension of 

Halstead's Software Science theory, it was necessary to show 

the explanatory power of using a mathematical model. 

Recalling the six ways of estimating the compile time: 

Table 4.1 

Mathematical Models 

Model    Calculated Estimated 

Ti  = K » (V«) « (V«)b (1) K » (Vhat)« « (Lhat)»  (4) 

Ta  = a * N (2) a « Nhat (5) 

Tj  = K « (N)« (3) K « (Nhat)« (6) 

The adjusted coefficients of determination for each model 

were calculated and are depicted in Fig. 4.1.  Although all 

the models were useful in explaining the compilation process 

of a compiler, overall. Model Ti (Equation 1 in Table 4.1), 

using known V and V*, provided the best explanatory power. 

That is, this model reduced the error the most in  estimating 
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the compilation time for all the compilers over the average 

v'V    compile time.  Therefore, the other models were abandoned, 

and Model Ti was analyzed further. 

^k m 

■ 

COMPILER MODEL COMPARISONS 
Irtwww CPUs 

AOS/VS CSC 

ES TS 
MODI OPOSALS 

TI -TI 

Legend:     TI   =  KtV^MV«)1» 

T2  =  A  »  N 

T3   =  K  «  N» 

"TI   =  K«(Vhat)««(Lhat)» 

*T2   =   a  «   Nhat 

ÄT3   =  K  «   (Nhat)* 

Fig 4.1  Compiler Model Comparisons 
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Table 4.2 shows the percentage of error reduction over 

the average compilation time if Model Ti is used to predict 

compile time.  It is interesting to note that the slowest 

compiler, AOS/VS system, provided the best model. 

Table 4.2 

Error Reduction in Predicting Compile Time 

Computer    Mean Compile Time    X Error Reduction 
 (CPU sees) 

UNIX 13.36 
AOS/VS 27.10 
VMS-ISL 12.36 
VMS-CSC 7.31 

55 .56 
83 .81 
74 09 
73 .72 

Based on the statistical analysis of Ti, the estimated 

exponents for V and V«, 'a' and 'b' respectively are shown 

in Table 4.3.  In Halstead's original work, he set the 

exponent of V and V* in the programmer time Equation 2.13 to 

2 and -1.  As indicated in Table 4.3, the estimated 

exponents are approximately 0.5 and 0.1.  For predicting 

compilation ~ime, V* does not appear to be as significant in 

the overal? •nodel as compared to Halstead's time equation. 

Instead of dividing V and V*, the compiler model multiplied 

these two parameters, where V* was very small.  On the other 

hand, taking the square root of V is interesting because of 

Xvv     t*le effect on modularization. 
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Table 4 .3 

Parameter Es tlmates 

UNIX: Adjusted R» = 0.5556, F = 107. 278 (0.0001) 

Parameter    Est Std Err Prob > T 

K     -0.6386 0.2075 0.0024 
a      0.4124 0.0315 0.0001 
b      0.0510 0.0292 0.0823 

AOS/VS: Adjusted R« = 0.8381, F = 441, 148 (0.0001) 

Parameter    Est Std Err Prob > T 

K     -1.5067 0.1415 0.0001 
a      0.5830 0.0215 0.0001 
b      0.0431 0.0200 0.0319 

VMS-ISL: Adjusted R> = 0.7409, F = 244. 079 (0.0001) 

Parameter    Est Std Err Prob > T 

K     -1.3314 0.1655 0.0001 
a      0.4730 0.0251 0.0001 
b      0.1047 0.0233 0.0001 

VMS-CSC: Adjusted R« = 0.7372, F = 239, 44 (0.0001) 

Parameter    Est Std Err Prob > T 

K    -1.7833 0.1642 0.0001 
a     0.4670 0.0249 0.0001 
b     0.0991 0.0231 0.0001 

A program can be modularized, thereby reducing the 

volume.  This can be expressed as: 

n 

i = l 

V| 
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If Halstead's time equation is a function of the power of V 

and that power is greater than 1 then: 

n 

V»  >>  2   (v»)2 

i = l 

As a result, modularization reduces programming time. 

However, the compiler model, seems to indicate the opposite 

since the exponent was fractional.  That is, if compile time 

is a function of the power of the volume, then the total sum 

of all the modules' volumes is greater than the one module 

containing all the programs: 

n 

V« <<  2    (v«)". where a < 1. 

i=l 

Consequently, compile time increases if modularization is 

used.  The time reduced by a programmer when modularizing 

software causes the compiler to suffer in performance. 

Intuitively this makes sense, because the compiler must 

expend more resources checking the library and symbol 

tables. 

The explanatory power of using Halstead's exponents, 

compared to the compiler Model Ti, is depicted in Fig. 4.2. 

^.-^5    Regression analysis was used to determined the const?ut 'K' . 
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Note that in all cases except for the AOS/VS compiler, Model 

Ti did better. Therefore, having the exponents set to 2 and 

-1 for V and V», respectively, was rejected. 

MODEL COMPARISONS 
i 

M 
•it 

ft»« 

•L«< 

«.1 I 
J 

I rN , 1 
ZZJ 

• 

Fig. 4.2  Halstead Model vs Compiler Model 

Based on Table 4.3, the estimated model for compilation 

time for each compiler is: 

UNIX    =  T  =  0.5281MV«-«*»«) 

AOS/VS  =  T =  0.2216«(V«-,»«»»)«((V«)0'0*31) 

VMS-ISL = T =  0.2641*(V<»-«'so)«((V«)0-l04T) 

VMS-CSC =  T  s  0.1681«(V••«•70)«((V«)0•0••I) 

If the independent variable was not significant - within 

.05, it was not included in the model.  That is why, V« is 

not in the UNIX model.  Appendix M shows the actual versus 

the predicted times (using the above equations) for each 

module. 
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Table 4.4 

■■rvV    Correlation Between Observed and Predicted (P) Compile Times 

Variable  N    Mean    Std Dev     Sum    Min    Max 

ASC 171 13.36 14.67 
DG 171 27.10 118.64 
ISL 171 12.36 18.60 
CSC 171 7.31 10.63 
PASC 171 10.41 7.29 
PDG 171 18.57 22.91 
PISL 171 10.84 10.72 
PCSC 171 6.48 6.23 

where  ASC - UNIX Compile Times 
DG  - AOS/VS Compile Times, 
ISL - VMS-ISL Compile Times, 
CSC - VMS-CSC Compile Times, 

and  the P prefix represents predicted compile times. 

PEARSON CORK. COEFF. / PROB>/R/ / UNDER HO:RHO / N = 171 

if'* 

2285.17 3.23 93.73 
4633.31 5.08 1535.62 
2113.06 2.79 126.40 
1250.22 1.69 80.88 
1779.45 3.68 63.93 
3175.31 3.55 201.02 
1853.80 2.63 72.59 
1108.60 1.62 41.82 

ASC DG ISL CSC PASC PDG  PISL PCSC 
ASC 1 .0 .55 .86 .87 .74 .77   .79 .79 
DG 1.0 .61 .59 .70 .75   .59 .59 
ISL 1.0 .99 .80 .85   .88 .87 
CSC 1.0 .80 .84   .88 .88 
PASC 1.0 .98   .94 .94 
PDG 1.0    .96 .97 
PISL 1.0 .999 
PCSC 1.0 

Note: Significant Level - 0.0001 

As demonstrated in Table 4.4, the correlation between 

predicted and observed compilation times for each compiler 

are all quite high.  Consequently, the model fits well. 

Note also that the correlation between that actual times on 

the VAX computers (ASC, ISL, CSC) are quite high.  This 

indicates that if the compile time on one VAX computer is 

high, then the compile time on another VAX computer will be 

high.  This makes sense, because these computers are from 

the same family. 
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The predicted times compare relatively well with the 

actual times as shown in Fig. 4.3 thru 4.6.  In these 

figures, all observations were sorted on the UNIX compile 

times which explains why the times on the AOS/VS system are 

not as smooth as the UNIX system.  It was necessary to leave 

the last two data points on Fig. 4.4 out to make the graph 

presentable.  Note on the residual graphs, as the compile 

time increases, the difference between actual and predicted 

times increases.  This seems to suggest that the error does 

not enter the model in an additive fashion but 

exponentially.  However, below 30 seconds of CPU time the 

model does very well.  As a final note, it is of interest to 

observe that the large discrepancies between actual and 

predicted compile times occurs in the same location for each 

compiler.  The magnitude of the error varies however, see 

Table 4.5 for a few examples. 

Table 4.5 

Residual Error Comparison 

PROGRAM 

INTDA2 
INTDA2 
INTDA2 
INTDA2 
INTDB2 
INTDB2 
INTDB2 
INTDB2 

SYSTEM 

UNIX 
AOS/VS 
VMS-ISL 
VMS-CSC 
UNIX 
AOS/VS 
VMS-ISL 
VMS-CSC 

RESIDUALS 

-11.59 
-16.93 
- 5.71 
- 4.32 
-19.29 
-33.71 
- 4.85 
- 2.16 

% 
*•>!• 

Capt Maness (17) investigated this phenomenon on the UNIX 

system, but was unsuccessful in determining a pattern in the 
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UNIX COMPILE TIME 
Aetuai v« Pr«dl«t«d 

^Ü&k 

I 
I 
3 

TEST yODULCS 

RESIDUALS OF COMPILE TIME 
UHIX 

TEST MODULES 

Fig.   4.3     UNIX  Compile Time:   Actual  va  Model  Prediction 
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AOS/VS COMPILE TIME 
Aotuai v* Pr«dl«t«d 

TEST MODULES 

# 

2 

RESIDUALS OF COMPILE TIME 
MS/Vt 

^ 

TEST MODULES 

Fig. 4.4  AOS/VS Compile Time: Actual vs Model Prediction 
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Fig. 4.5  VMS-ISL Compile Time: Actual vs Model Prediction 
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Fig. 4.6  VMS-CSC Compile Time: Actual vs Model Prediction 
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modules which would cause the large difference between the 

compilation times.  Note that the predicted times are 

very close to the actual times, and then move apart as 

compile time increases past 30 seconds of CPU time. 

Table 4.6 

Parameter Estimates for Pooled Data 

Adjusted R« = 0.7066, F = 412.312 (0.0001) 

Parameter   Est       Std Err   Prob > T 

K -0.9818 0.1018 0.0001 
a 0.4839 0.0151 0.0001 
b 0.0745 0.0140 0.0001 

Dummy e -0.5601 0.0319 0.0001 
Dummy f -0.1063 0.0319 0.0009 

The next major area of investigation was the development 

of a performance index.  Table 4.6  shows the results of 

this effort.  The results of using dummy variables does not 

really change the compiler model from Table 4.3.  Note that 

the exponents for V and V* are approximately the same - 0.5 

and 0.1, respectively.  However,'K', the translation rate, 

changes slightly.  That is, the discrimination rate for each 

compiler is significantly different from the base, UNIX. 

The equations for each compiler now become: 

UNIX    = T = 0.3746»(V<>-«»»»)«( (V«)0-07*8) 

AOS/VS  = T = 0.3369«<Vo-««3»)«((V«)0-0748) 

VMS-ISL = T = 0.2140»(V0-«»»»)«((V«)0-0748) 

%•' VMS-CSC = T = 0.1924*(V<>-«»3»)«( (v«)0-0748) 
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Fi . 4.7 shows the performance rate of each compiler.  Note 

th : each line represents the plot of the linear equation 

fo each compiler model.  Appendix N shows a graph of the 

ac lal model equations.  As Fig 4.7 suggests, the compilers 

wo Ld be ranked as follows (from the slowest to the 

fa :est): 

# 

Table 4.7 

Ada Compiler Evaluation 

Rank by Rank by X Faster than 
Compile Ave. Compiler Model UNIX 

AOS/VS UNIX 
UNIX AOS/VS 10.1 
VMS-ISL VMS-ISL 42.9 
VMS-CSC VMS-CSC 48.6 

Observe also that the compiler on the ISL and the CSC 

co niters were the same.  Therefore, it can be concluded 

fr \  above that the CSC computer is faster than the ISL 

co niter by 10.1 percent.  This is reasonable, since the CSC 

VA  11/785 computer is an upgrade from the ISL VAX 11/780 

co )uter. 

Having presented the results of this research effort, a 

nu :>er of conclusions and recommendations can now be 

pr rented. 
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V.  Concluaiona anil Reoommendationa 

In this study, an application of Halstead's Software 

Science theory to compilers was evaluated.  Two basic 

concepts and properties of software science were reviewed, 

program length and programming time.  Counting rules were 

established, and then software science measures examined the 

data collected.  In addition, mathematical models were 

proposed and the appliciabilty of Halstead's theory to 

compilers was demonstrated.  The experiment was designed to 

test two hypotheses used to validate this application. 

Recalling the null hypotheses - 

1) There ia no significant difference in  the 

predictive ability of Software Science in explaining compile 

time across alternative Ada compilers, 

2) There is no significant difference in  the 

discrimination rate across alternative Ada comp'lers. 

Evidence was presented in Chapter IV which supported the 

rejection of these hypotheses and, consequently, accepting 

the alternative hypotheses.  That is, there is a difference 

in predicting compilation time for alternative compilers and 

there is a difference in the translation rate for different 

compilers. 
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Concluaiona 

A number of conclusions may be drawn from the above 

analysis: 

First, the attempt to develop a measure which would 

provide a suitable approximation of the amount of time 

expended during the compilation process has been validated. 

The results suggest that the software science compiler model 

is a good tool for predicting compilation times.  The 

correlation between the actual and predicted compile times 

were quite high: 

^^ •• 

Table 5.1 

Correlation between Actual and Predicted Compilation Times 

SYSTEM 

UNIX 
AOS/VS 
VMS-ISL 
VMS-CSC 

CORRELATION 

0.74 
0.75 
0.88 
0.89 

^ 

Second, using the actual value of the variables in the 

model provided a better approximation of compilation time. 

Referring to the model equations, all the estimated models 

used the length estimator.  It as been shown (28:706) that 

the length estimator over-estimates small programs and 

under-estimates large programs.  This is especially true 

with a powerful language like Ada that has a variety of 

operators available.  Consequently, the compiler models 

using estimated values are not as accurate. 
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Third, the signs and the magnitudes of the estimated 

parameters were not within the proximity of the theorized 

values.  In particular, the value of the exponent for the 

volume (V being approximately 0.5 instead of 2.0) was 

unexpected.  However, this value seems reasonable.  As 

explained in Chapter IV, a compiler must expend more 

resources compiling several modules separately than 

compiling a single program containing all the modules.  In 

addition, potential volume, V* was not negative and was not 

as significant in this application as compared to 

programming time.  If the exponents were restricted to those 

proposed by Halstead's time equation, the explanatory power 

of the model was reduced as shown in Figure 4.2. 

Fourth, the explanatory power of the model differed for 

each compiler. Therefore, the predictive ability of software 

science in explaining compile time across alternative Ada 

compilers was different, but uniformly encouraging.  There 

are several possible explainations for this.  First, 

different architectures and operating environments will vary 

the compile time for each compiler.  Consequently, the 

estimated parameters may be inaccurate.  Ideally, a 

dedicated system would have been preferred.  Second, the 

efficiency of a compiler affects the compilation time. 

Finally, one of the most significant findings in this 

study was the development of a compiler performance index. 

Clearly, from the results, the values for 'K' represents the 

processing rate of a compiler.  The results indicate that 

72 

-i^Tji-'fl-V«-'»-^ «_1JB-üi-lii.'vVA.'j.*».^»."^»-"---'^■-%_-',^^._-J.j._! ■. " ■_'•.: --' v* «-*, .r-'i •-', A-', j-'. %..'. »-'. .<- , r-°i '.'. »-'. ^. a.'r-' 4.: »-'. *>■' .*-- r-. \ \ jJi" J-^ .iu*, *.•,'%... a- n- . <-' 



V^^^mm^&^9F<.iM^V!i*VJX*. 9**;?**. ny H.^. ^T^.'^^y.1'* '-'.TJ »u »i?.,"-r'! f_"t* y ■ vw wf ^^TT^^.V'.'TIVI''^VL^TV
V
A" ^^Tv^v'.^^vt^rL-rry'.^?' 

ranking compilers performance solely on average compile time 

is incorrect.  Based on the average compile time, the 

ranking from the slowest to the fastest would have been ehe 

AOS/VS compiler, the UNIX compiler, and then the VAX 

compiler.  In contrast, the software science compiler model 

ranking was UNIX, AOS/VS, and then VMS.  As the results have 

shown, although the compiler on the AOS/VS system appears to 

be the slowest, it was faster than the compiler on the UNIX 

system as far as translation or processing rate.  It was 

also shown that 'K' can also rank computers, if the 

operating environment is the same.  In this case, as 

expected, a VAX 11/785 was faster than a VAX 11/780. 

(jj£j        RecoHuaendfttigna 

The following are recommendations for research on topics 

related to this thesis: 

- Different Counting Rules.  Defining and counting 

operators and operands is a major concern because these 

tokens are the basic foundation of software science. 

Therefore, different counting strategies should be 

investigated to determine their affect on the compiler 

model. 

- Data Selection.  By selecting a wider class of 

programs, the ability of the proposed model to account for 

various aspects of the compiler phenomena may be assessed. 
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- Nonlinear Analysis.   As the results have indicated, 

the model becomes less effective as the compile time 

increases.  Therefore, the assumption that the error enters 

the model in an additive fashion might be incorrect. 

Consequently, this error should be investigated further.  In 

addition, a nonlinear model should be analyzed which assumes 

that the error enters the model in a multiplicative fashion. 

- The Use of Pragmas.  Unlike other languages, Ada 

provides pragmas which are directives to the compiler.  The 

effects of using this construct on the compiler model should 

be investigated. 

- Performance Index.  This study could not determine 

which compiler was better because each compiler was on a 

different computer with different operating systems.  The 

analysis only suggested that a compiler on a certain 

computer performed in a certain fashion.  Consequently, if a 

user had to select a computer and compiler, this approach is 

appropriate.  However, the only true test to determine which 

compiler is more efficient on a particular computer is to 

have all compilers in question on the same computer. 

Therefore, if possible, this should be investigated. 

- Compilers for Other Languages.  It is apparent that the 

software science compiler model is useful in predicting the 

*.*• compile time and determining the efficiency of a compiler. 

ä 
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Since only a limited analysis on a single language was 

performed, other languages should be studied. 

This study obviously represents a preliminary 

exploration of the applicability of software science metrics 

to compilers.  The results have indicated that there is 

enough evidence to continue investigating this area.  Future 

research testing this model on other compilers and on a 

broader spectrum of data might illuminate the compilation 

phenomena of compilers.  A compiler index has been proposed, 

developed and tested.  With further research, the software 

science compiler model may become a valuable tool in 

evaluating compiler efficiency for the DoD and the civilian 

community. 
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APPENDIX A 

FORTRAN Caanliiai Rule Coaparisgns    (2:65) 

« 

# 

FORTRAN-IV element PURDUE COUNTING RULE SAP/H RULE 

ACCEPT Counted Not Counted 

BACKSPACE Counted Not Counted 

CALL Counted paired with 
routine name 

Counted same 
as Purdue rule 

DATA Counted Not Counted 

DO Counted Counted, Paired 
with =,, 

END Not Counted Not Counted 

ENDFILE Counted Not Counted 

GOTO Label Counted As GOTO Label Counted as GOTO 
Label is 
operand 

GOTOO.VAR Counted Counted 

IF()STATEMENT Counted, () separate Counted,grouped 
with () 

IF()LABEL.LABEL, 
LABEL 

Counted, each label 
is separate GOTO 
labels 

Counted as IF() 
Labels not 
counted 

PRINT Counted Not Counted 

READ Counted Not Counted 

RETURN Counted Not Counted 

REWIND Counted Not Counted 

STOP Counted Not Counted 

TYPE Counted Not Counted 

WRITE Counted Not Counted 

Var=Expression Evaluated and 
counted 

Evaluated and 
counted 
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m FORTRAN CflnaiJLai Rule Comparisons (Con't) 

0 

FORTRAN-IV element    PURDUE COUNTING RULE 

= Counted 

Comma (,) 

() 

Logical Operators 

END OF STATEMENTS 

Function Calls 

Counted, when in 
counted statement 

Counted, when in 
counted statement 

Counted 

Counted 

Counted 

Counted as operators 
and operands 

'LITERAL STRINGS'     Counted as operands 

Subscripts Counted 

Variables Counted as operands 

I/O Variables Counted 

SAP/H RULE 

Counted, except 
from DO 

Counted, when 
in counted 
statement 

Counted, from 
arithmetic 
express. 

Counted 

Counted 

Counted 

Counted as 
operators when 
used in arith 
statements, 
else as 
operands 

Not Counted 

Not Counted 

Counted as 
operands if in 
counted 
statements. 

Not Counted 
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APPENDIX B 

Ada Programs to Demonatrate Counting 

EXAMPLE l - NRPCA1 Sovrcg LiaüüÄ: 

with INSTRUMENT; 
use INSTRUMENT; 

procedure NRPCA1 is 
package PS_CS is new PROCS(INTEGER); 
use PS_CS; 
package B is new PROCS(BOOLEAN); 

TTRUE : B.T := B.T(TRUE); 
TFALSE : B.T := B.T(FALSE); 
TEST : B.T := B.Ident(TFALSE); 
Recursion : B.T := B.Ident(test); 
procedure Nested_Recursive_Procedure is 

Local_l : T; 
Local_2 : T; 

procedure Nested is 
begin 

if BOOLEAN(Recursion) then 
B.Let(Recursion, B.Ident(TFALSE)); 
Ne8ted_Recursive_Procedure; 

else 
B.Let(Test, B.Ident(TFALSE)); 
if BOOLEAN(Test) then 
Nested_Recursive_Procedure; 

end if; 
end if; 

end Nested; 

^egin 
if BOOLEAN(Recursion) then 
Let(Local_l,Ident(Init)); 
Nested; 

elsif not BOOLEAN(Test) then 
Let(Local_2,Ident(Init)); 
Nested; 

end if; 
end Nested_Recursive_Procedure; 

begin 
START("NRPCA1"/'Nested Recursive Procedure Call (Control)"); 
for I in 1..100000 loop 
b.let(recursion,B.ident(test)); 
Nested_Recursive_Procedure; 

end loop; 
STOP; 

end NRPCA1; 
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■hi 

# 

The COUNT for NRPCA1.: 

OPERATOR COUNT OPERAND COUNT 

NOT INSTRUMENT 2 
BEGIN  END NRPCA1 (2 types) 3 
ELSE PS_CS 2 
ELSIF  THEN PROCS 2 
FOR IN LOOP END LOOP INTEGER 
IF THEN  END IF 3 BOOLEAN 

B 15 
IS 3 TTRUE 

TFALSE 
GENERIC INSTANTIATION (NEW) 2 T 

TRUE 
PROCEDURE 3 FALSE 
USE 2 TEST 6 
WITH 1 RECURSION 5 
»• « 2 NESTED^RECURSIVE. PROCEDURE 2 
• • 1 LOCAL_l 2 
• • 6 LOCAL_2 2 
; s 4 NESTED 2 
• 
• 30 INIT 2 
t 6 NESTED RECURSIVE PROCEDURE 
( ) (aggregate) 2 CALL (CONTROL) 1 
( ) (invocation) 13 
( ) (type conversion) 6 BOOLEAN 4 
• 14 I 1 

1 1 
100000 1 

««the following operators 
««are procedure calls 
LET (2 types) 

first type 3 
second type 2 

NESTED_RECURSIVE_PROCEDURE 2 
NESTED 2 
START 1 
STOP 1 

•? o>. 

««the following operators 
««are function calls 
IDENT (2 types) 

first type 
second type 

5 
2 

««the following operators 
««are type indicators 
T 6 
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EXAMPLE 2 - 0PCEA1 Source JaiaMii&: 

'*->     with INSTRUMENT; 
use INSTRUMENT; 

procedure OPCEA1 is 

package NEW_PROCS is new PROCS(INTEGER); 
use NEW_PROCS; 

Global_l: T; 
01obal_2: T; 
01obal_3: T; 
Global_4: T; 

function Function_l (Input : 
begin 

if Input = Init then 
return Init/Init; 

end if; 
return Function_l(Init); 

end Function_l; 

function Function_2 (Input : 
begin 

if Input /= Init then 
return function_2(Init); 

end if; 
return Init/Init; 

end Function_2; 

T) return T is 

T) return T is 

begin 
START("OPCEA1","Optimization Perf., Call Elim. (control)"); 
for I in 1..1Ü00 loop 

Let(Global_l, Ident(Init)); 
Let(Global_2f Ident(Init)); 
Let(Global_3, Ident(Init)); 
Let(Global_4t Ident(Init) jl; 

if Ident(Init) = Init then 

Global_l := T(T(Function_2(Init)«Global_4)/Functional(Init); 
else 

Global_2 := T(T(Functional(Init)«Global_4)/Function_l(Init); 
end if; 
Let(Global_l, Ident(Init)); 
Let(Global_2, Ident(Init)); 
Let(Global_3, Ident(Init)); 
Let(Global_4, Ident(Init)); 
end loop; 
STOP; 

end 0PCEA1; 
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lha COUNT for QPCEA1.: 
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i 
i 
.'• 
■ 

OPERATOR COUNT, OPERAND, COUNT          j 

= 2 INSTRUMENT I 
/= 1 OPCEA1 (2 types) 3                   ^, 

» 2 NEW_PROCS 2         c 
/ 4 PROCS 

1                   ■ BEGIN  END 3 INTEGER 
ELSE 1 GLOBAL.l 4                   ? FOR IN LOOP END LOOP 1 GL0BAL_2 4            ^ 

4                 f: FUNCTION RETURN 2 GLOBAL. 3 
IF THEN END IF 3 GLOBAL_4 4             0 

FUNCTION.! 2            ? 
IS 3 FUNCTION 2 2            £ 

INPUT (2 types, 4            S 
2 each) 

M 

GENERIC INSTANTIATION (NEW) 1 INIT 22            f 
I 1            J 

PROCEDURE 1 1 1                 '-r 
USE 2 1000 1                 £ 
WITH 1 T 4              1 
RETURN 4 OPTIMIZATION PERF., Si 
it it 

• • 
• 

2 
1 
6 
2 

31 

CALL ELIM. (CONTROL) 1            ? 
• 
• • 
• ( 

i 9 s 
( ) (aggregate) 1 :: 

( ) (declaration) 2 *• 

( ) (invocation) 24 ;: 
( ) (subscript) 4 ? 
««the following operators 

l\ 

««are procedure calls [-' 
START 1 • 

STOP 1 Y 

LET 8 i 
««the following operators MI 

««are function calls •. 
FUNCTION.! 4 , 
FUNCTIONS 2 ^ 
IDENT 9 1 

««the following operators < 
««are type indicators 
T 8 

i 

5 
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1 
APPENDIX C 

SAMPLE DATA SHEET 

PROGRAM NAME: 

Operators Freq Operands Freq I/O 

(Logical) 
and 
or 
xor 

(Relational) 
= 

/ = 
< 
> 

ETC 

# 

(Binary) 
+ 

(Unary) 
+ 

(Multiply) 
« 

/ 
mod 
rem 

(Highest Prec) 
«* 

abs 
not 

(Short Circuit) 
and then 
or else 

(Char Entities) 
H ii 

# * 
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() expression 
() invocation 

ETC 

(Reserved Words) 
abort 
accept 
access 
all 
array of 
at 
begin end 
body is 
case is when 
end case 

'^y 

ETC 

PROCEDURE CALLS 

FUNCTIONS CALLS : 

TASK CALLS 

TYPE INDICATORS : 
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APPENDIX D 

Data for the Compile i  Time Study 

Program nai. DJ. ILL tu HJ. 

ADDSAl 0 19 14 20 36 
ADDSA2 0 19 14 32 48 
AKERA2 3 24 12 28 57 
AOCEA1 0 27 20 48 90 
AOIEA1 3 24 20 49 94 
ASSIA2 0 16 11 1013 1025 
ASSIB2 0 17 12 2014 2027 
ATTRIB 17 42 56 167 348 
BALPA1 2 15 10 13 27 
BALPA2 2 19 10 15 33 
BLEMA2 0 18 9 19 164 
BRUAA1 2 30 17 36 86 
BRUAA2 2 30 17 38 90 
BRUNA1 2 25 16 35 77 
BRUNA2 2 26 16 37 79 
BSRCA2 10 61 52 117 238 
BSRCA3 10 60 53 117 237 
C31PA2 94 39 149 433 499 
CAPAA1 2 34 20 33 76 
CAPAA2 3 37 20 36 83 
CAPAB1 2 32 21 35 76 
CAPAB2 3 35 22 39 83 
CASEA2 2 37 274 1072 1366 
CENTA2 0 34 275 300 334 
CHSSA1 5 41 42 109 172 
CHSSA2 5 42 42 114 179 
CPUTIM 0 10 4 9 20 
CSBTA1 20 13 23 54 
CSBTA2 24 13 25 60 
CSCTA1 21 21 39 104 
CSCTA2 25 21 50 128 
CSDTA1 21 14 23 56 
CSDTA2 26 16 29 67 
CSETA1 21 16 29 74 
CSETA2 25 16 35 88 
CSSTA1 21 13 23 56 
CSSTA2 25 13 26 64 
DATABA 136 106 224 754 1780 
DRPCA1 26 18 37 81 
F1IUA1 3 19 15 29 68 
F1IUA2 3 19 16 32 71 
FACTAl 2 29 13 25 58 
FACTA2 2 32 17 35 74 
FL2RA1 3 22 14 32 75 
FL2RA2 3 23 15 35 79 
FLP1A1 2 18 12 21 47 
FLP1A2 2 18 13 28 58 
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# 

•B) 

tf 

Program na«. ILL JLX UJL tu 

FPAAAl 2 23 15 22 49 
FPAAA2 3 28 16 24 59 
FPAAB1 2 24 18 28 63 
FPAAB2 4 30 20 34 85 
FPAAC1 2 23 24 40 87 
FPAAC2 7 29 29 55 141 
FPAAD1 2 23 30 63 138 
FPAAD2 12 29 44 93 248 
FPANA1 2 18 13 19 42 
FPANA2 3 23 14 21 48 
FPANB1 2 21 17 27 61 
FPANB2 4 25 19 33 7o 
FPANC1 2 21 23 39 86 
FPANC2 7 26 28 54 121 
FPAND1 2 24 34 63 138 
FPAND2 12 26 43 91 206 
FPRAA1 3 30 16 30 76 
FPRAA2 3 30 16 32 80 
FPRNA1 3 26 16 29 67 
FPRNA2 3 26 16 31 69 
GVRAA1 3 21 14 23 57 
GVRAA2 3 22 14 25 61 
GVRNA1 3 19 14 23 51 
GVRNA2 3 20 14 25 53 
HSDRA2 3 38 36 103 131 
IADDA1 23 19 37 85 
IADDA2 24 19 40 88 
IDIVA2 24 19 40 88 
IEXPA2 25 19 41 89 
IMIXA2 27 19 42 92 
IMIXB1 24 21 51 123 
IMIXB2 30 21 60 138 
IMIXC2 27 21 59 137 
IMIXD1 28 22 64 142 
IMIXE1 24 21 51 123 
IMIXE2 31 22 65 141 
INQUIR 115 119 248 871 1936 
INSTR 111 121 298 1347 2434 
INTDA2 0 19 159 462 478 
INTDB2 0 14 505 508 1518 
INTDB3 0 14 505 508 520 
INTQA2 0 26 15 26 58 
IOPKG 40 77 126 430 799 
ISEQA2 0 28 20 43 87 
LAVRA1 2 26 17 34 63 
LAVRA2 2 26 17 38 72 
LAVRB1 2 26 26 151 320 
LAVRB2 2 26 26 191 360 
LFIRA1 2 31 21 54 93 
LFSRA1 5 26 19 41 84 
LOAEA1 2 26 21 41 81 
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m Program na«. DJ. DJ. gj. ä± 
ir* 

L0ECA1 3 24 19 35 66 
LOECA2 3 24 19 37 71 
LOFCA1 6 28 20 38 85 
LOSCA1 3 29 21 45 95 
LOUIA1 3 25 18 36 73 
LOUIA2 3 25 19 38 74 
LRR1A1 2 26 22 39 94 
LRR1A2 2 27 22 42 97 
LRR3A1 2 26 22 52 113 
LRR3A2 2 27 22 57 118 
LVRAB1 2 25 23 115 350 
LVRAB2 2 25 23 135 390 
MINIA2 0 14 6 9 21 
MTCQA2 0 23 14 21 49 
MTESA2 0 24 18 25 48 
MULTA1 0 19 13 20 36 
MULTA2 0 20 13 32 48 
NL00A1 2 21 17 21 53 
NL07A2 2 29 21 39 82 
NL65A2 2 29 40 135 340 
NPPCA1 4 20 15 31 78 
NPPCA2 4 20 15 27 68 
NRPCA1 6 30 25 64 129 

m NRPCA2 6 30 25 64 131 
NULLA1 0 18 10 16 35 
NULLA2 0 19 10 16 37 
OPAEA1 2 28 19 68 139 
OPBFA1 1 25 15 39 85 
OPCEA1 8 32 20 63 146 
OPISA1 2 30 22 90 174 
OPNFA1 2 26 15 36 75 
OPSCA1 2 35 19 78 126 
PGQUA2 0 27 22 42 77 
PIALA2 0 23 20 59 94 
PKGEA1 26 24 88 242 509 
PKGEA2 26 52 88 268 485 
PRCOA2 5 59 30 90 173 
PUZZA2 26 46 100 562 787 
RANDA2 4 31 29 51 103 
RCDSA2 0 26 616 4808 7248 
RENDA1 1 31 15 32 74 
RENDA2 1 32 14 32 71 
RPTWRI 8 19 10 12 43 
SCHEMA 6 34 233 362 ^30 
SIEVA1 0 22 16 24 53 
SIEVA2 3 28 22 54 85 
SORTA2 0 30 29 111 159 
SQ10A2 0 21 15 23 44 

-•H SQPGA2 0 24 17 31 56 
'v> SRCRA1 1 35 40 71 125 

TAIPA1 2 31 14 31 74 
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TAIPA2 2 32 16 
TPGTA2 0 32 16 
TPGTC2 20 32 52 
TPITA1 1 30 15 
TPITA2 1 30 16 
TPITB1 1 34 23 
TPITB2 1 37 28 
TPITD1 0 45 52 
TPITD2 0 45 71 
TPOTA2 0 26 40 
TPOTC2 0 125 109 
TPSTA2 0 26 12 
TPTCB2 0 29 19 
TPTCC2 0 34 29 
TPTCD2 0 44 44 
TPUTE2 2 31 16 
UAPAA1 6 40 25 
VFADA1 0 27 17 
VFADA2 0 28 17 
WHETA2 12 43 66 
WHLPA1 3 15 11 
WHLPA2 3 17 11 

87 

37 92 
36 83 
125 335 
41 93 
44 100 
77 176 
92 211 
207 442 
266 580 
141 381 
417 114 
29 71 
62 145 
107 245 
220 445 
48 100 
49 113 
26 55 
32 61 
362 444 
15 33 
17 36 
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APPENDIX E 

Where to Bertin 

1).  Getting Access to Computers at AFIT: 

a. Obtain and Complete AFIT Form 35 
for access to ASC and CSC. 

1. Disk Space requirement: 10,000 blocks 

2. Enter: man [command] for information 
on Ada, where command is Ada, 
a.mklib, a.cleanlib, etc. 

b. For access to ISL computer contact 
professor incharge of system. 

1. Obtain and Complete AFIT Form 35, and then 
give it to the professor in charge of the 
system. 

Current point of contact: Dr. Hartrum 

2. For general information on Ada, enter: 
type sys$doc:ada.doc 

3. For help on Ada commands, enter: Help. 

2).  Getting Access to DG computer: 

a. Location - Information Systems and 
Technology Center, Bldg 676 
in Area B. 

b. Contact - System Manager 

Currently - Capt Deese ( Rm. 109, 
PH. 255-4472) 

c. For help on Ada, enter: ADEHELP. (Note: you must 
be in the ADE environment). 

3).  Statistical Analysis Tools 

a. CSC - SAS statistical package 

Note: For information on getting started with 
SAS enter: type sys$doc:sas.doc. 

b. or, SSC - S statistical package 

Note: For information on S enter: man S 
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APPENDIX F 

■ 
1 
I 

H 

II 

1 
: 

.- 

%■ 
Actual Comuile T im&a. 

VAX11/785 DGMV8000 VAXll/780 VAXll/785            - 
UNIX AOS/VS VMS VMS               5 

ADDSA1 

(ASC) 

3.77 

(ISL) (csc)          p 

7.88 3.27 1.93             \ 
ADDSA2 4.00 9.18 3.54 2.10             | 
AKERA2 4.03 7.49 3.72 2.i9                   : 
A0CEA1 9.90 12.15 8.14 4.9i                 ;■ 
AOIEA1 9.60 12.06 8.36 5.12 
ASSIA2 12.77 45.48 19.11 10.69 
ASSIB2 24.13 93.08 40.03 2i.i4        j; 
ATTRIB 13.23 25.47 14.49 8.30 
BALPA1 3.37 5.99 3.33 1.95 
BALPA2 3.60 6.36 3.46 2.03             i 
BLEMA2 5.67 8.80 5.01 2.85 
BRUAA1 9.03 11.08 8.05 4.84 
BRUAA2 9.27 11.29 8.05 4.92             J 
BRUNA1 9.00 10.99 7.89 4.77 
BRUNA2 9.17 11.00 7.94 4.74             I 
BSRCA2 13.50 20.35 13.79 8.19 
BSRCA3 13.73 20.44 13.78 8.16             I 
C31PA2 13.80 35.25 17.42 10.89 

,-■'', • 
CAPAA1 9.80 11.04 7.80 4.73             C w CAPAA2 9.73 11.10 7.92 4.78 
CAPAB1 10.37 11.00 7.90 4.82 
CAPAB2 10.00 11.21 7.96 4.84             f 
CASEA2 43.50 154.12 25.63 14.65 
CENTA2 14.30 28.25 7.77 3.72 
CHSSA1 7.40 14.06 5.77 3.45 
CHSSA2 7.57 14.26 5.94 3.59             | 
CPUTIM 3.78 5.57 5.62 3.39 
CSBTA1 8.50 9.79 7.45 4.55             'l 
CSBTA2 8.77 9.95 7.54 4.48             1 
CSCTA1 10.00 12.06 8.53 5.14 
CSCTA2 10.60 13.23 8.79 5.31         : 
CSDTA1 8.77 9.91 7.49 4.52             \ 
CSDTA2 8.60 10.26 7.60 4.53 
CSETA1 9.13 10.62 7.85 4.69 
CSETA2 9.20 11.06 8.01 4.85                  : 
CSSTA1 8.73 10.00 7.50 4.47 
CSSTA2 8.67 10.17 7.65 4.54             . 
DATABA 93.73 163.54 119.03 72.89             ! 
DRPCA1 9.23 10.87 7.91 4.75 
F1IUA1 4.50 7.44 4.27 2.49            f 
F1IUA2 4.67 7.67 4.41 2.66 
FACTA1 4.07 6.92 3.62 2.13 
FACTA2 5.47 7.69 4.54 2.71 
FL2RA1 4.77 7.76 4.28 2.57             J 

-> 
'>>' 
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m 

VAX11/785 DGMV8000 VAX11/780 VAX11/785 
UNIX AOS/VS VMS VMS 
(ASCI 

4.77 

(ISU (CSC) 

FL2RA2 8.00 4.41 2.59 
FLP1A1 3.67 6.58 3.64 1.69 
FLP1A2 4.10 6.83 3.88 2.28 
FPAAA1 8.60 9.29 7.32 4.48 
FPAAA2 8.87 9.47 7.58 4.56 
FPAAB1 9.23 10.07 7.77 4.66 
FPAAB2 9.53 10.55 8.15 4.91 
FPAAC1 10.33 11.58 8.65 5.23 
FPAAC2 11.17 12.54 9.46 5.69 
FPAAD1 12.37 14.26 10.24 6.17 
FPAAD2 14.33 16.17 11.60 7.10 
FPANA1 8.53 9.22 7.30 4.44 
FPANA2 8.47 9.27 7.34 4.45 
FPANB1 9.30 10.08 7.68 4.68 
FPANB2 9.37 10.46 7.96 4.76 
FPANC1 10.37 11.47 8.58 5.16 
FPANC2 10.83 12.25 9.13 5.47 
FPAND1 12.47 14.24 10.17 6.19 
FPAND2 13.37 15.45 10.94 6.71 
FPRAA1 9.53 10.45 7.86 4.81 
FPRAA2 9.50 10.45 7.94 4.77 
FPRNA1 9.30 10.29 7.69 4.67 
FPRNA2 9.30 10.35 7.75 4.71 
GVRAA1 8.93 9.87 7.53 4.47 
GVRAA2 8.93 9.94 7.50 4.55 
0VRNA1 8.87 9.79 7.40 4.44 
GVRNA2 8.57 9.87 7.51 4.53 
HSDRA2 8.07 13.93 6.96 4.03 
IADDA1 9.47 11.23 8,07 4.82 
IADDA2 9.73 11.72 8.02 4.86 
IDIVA2 9.40 11.62 8.03 4.88 
IEXPA2 9.77 11.50 8.20 4.83 
IMIXA2 9.77 12.44 8.08 4.96 
IMIXB1 10.93 13.00 8.88 5.28 
IMIXB2 11.17 14.98 9.10 5.46 
IMIXC2 11.13 14.63 9.06 5.47 
IMIXD1 11.10 15.53 9.20 5.60 
IMIXE1 10.83 13.01 8.95 5.37 
IMIXE2 11.23 15.25 9.16 5.68 
INQUIR 84.33 158.19 126.40 80.88 
INSTR 59.97 136.58 75.48 40.21 
INTDA2 8.47 22.99 13.03 6.95 
INTDB2 10.47 35.98 24.60 15.45 
INTDB3 9.87 22.91 20.19 14.03 
INTQA2 10.13 9.23 6.25 3.86 
IOPKG 35.77 81.91 45.93 28.03 
ISEQA2 15.40 15.84 10.94 6.81 
LAVRA1 11.43 10.86 9.15 5.58 
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Vv 

LAVRA2 
LAVRB1 
LAVRB2 
LFIRA1 
LFSRA1 
L0AEA1 
L0ECA1 
L0ECA2 
L0FCA1 
L0SCA1 
L0UIA1 
L0UIA2 
LRR1A1 
LRR1A2 
LRR3A1 
LRR3A2 
LVRAB1 
LVRAB2 
MINIA2 
MTCQA2 
MTESA2 
MULTA1 
MULTA2 
NL00A1 
NL07A2 
NL65A2 
NPPCA1 
NPPCA2 
NRPCA1 
NRPCA2 
NULLA1 
NULLA2 
OPAEA1 
OPBFA1 
OPCEA1 
OPISA1 
OPNFA1 
OPSCA1 
PGQUA2 
PIALA2 
PKGEA1 
PKGEA2 
PRCOA2 
PUZZA2 
RANDA2 
RCDSA2 
RENDA1 
RENDA2 

VAX11/785 DGMV8000 VAX11/780 VAX11/785 
UNIX AOS/VS VMS VMS 
(ASC) (ISLi (CSC) 

11.53 11.11 9.22 5.64 
26.03 22.73 23.48 14.37 
30.40 24.24 24.67 15.15 
10.97 14.23 9.18 5.59 
9.27 11.15 8.21 4.92 
9.20 11.32 8.00 4.86 
9.40 10.87 7.96 4.81 
9.30 11.21 8.10 4.92 
9.43 11.13 8.27 5.04 
10.27 12.00 9.62 5.84 
9.13 11.08 8.20 4.99 
9.17 11.08 8.20 4.97 
8.97 11.39 8.04 4.78 
9.30 11.46 7.97 4.80 
9.30 12.82 8.36 4.99 
9.37 13.14 8.48 4.98 
16.57 21.01 13.26 8.08 
17.60 22.06 13.71 8.51 
3.23 5.08 2.79 1.70 
9.63 8.99 6.06 3.70 
11.03 10.90 8.05 5.08 
3.97 6.94 3.25 2.00 
4.07 8.20 3.52 2.18 
9.63 8.60 7.02 4.30 
9.63 10.94 8.16 4.93 
32.13 46.78 15.15 9.26 
9.63 10.41 7.90 4.82 
9.33 9.95 7.91 4.67 
12.87 12.73 9.35 5.67 
12.87 12.85 9.34 5.71 
3.87 6.82 4.47 2.63 
3.93 6.76 4.41 2.60 
11.07 15.21 8.98 5.50 
9.60 11.40 8.14 4.95 
11.63 14.14 9.33 5.65 
11.83 17.01 9.48 5.68 
8.90 11.21 7.77 4.78 
11.40 14.35 10.20 6.46 
10.03 10.00 6.44 3.99 
4.40 9.88 4.26 2.50 
41.70 63.65 82.27 37.55 
43.77 67.57 84.97 40.04 
8.73 12.88 6.73 4.17 
23.10 62.19 20.88 12.52 
4.17 8.45 4.01 2.41 
89.87 1535.62 122.16 66.82 
5.47 7.67 4.29 2.56 
5.30 7.69 4.32 2.62 
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RPTWRI 
SCHEMA 
SIEVA1 
SIEVA2 
S0RTA2 
SQ10A2 
SQPGA2 
SRCRA1 
TAIPA1 
TAIPA2 
TPGTA2 
TPGTC2 
TPITA1 
TPITA2 
TPITB1 
TPITB2 
TPITD1 
TPITD2 
TP0TA2 
TP0TC2 
TPSTA2 
TPTCB2 
TPTCC2 
TPTCD2 
TPUTE2 
UAPAA1 
VFADA1 
VFADA2 
WHETA2 
WHLPA1 
WHLPA2 

VAX11/785 DGMV8000 VAX11/780 VAX11/785 
UNIX AOS/VS VMS VMS 
(ASCi USh) rcso 

3.70 6.94 2.90 1.77 
74.17 62.97 42.57 26.82 
3.83 6.49 3.54 2.21 
4.63 8.99 4.20 2.54 
10.23 15.06 8.75 5.54 
13.50 13.50 9.81 6.26 
13.83 14.15 10.08 6.43 
8.97 14.03 8.97 5.70 
5.43 7.38 4.51 2.83 
5.63 7.64 4.63 2.97 
5.63 7.19 4.63 2.98 
9.47 13.97 8.33 5.27 
6.27 7.82 5.05 3.17 
6.57 8.00 5.17 3.38 
9.93 10.75 7.44 4.78 
11.13 11.56 8.09 5.17 
23.73 20.98 16.19 10.08 
28.80 24.94 18.99 11.92 
12.30 15.99 9.37 5.90 
29.90 42.70 21.76 13.54 
5.50 6.94 4.48 2.80 
8.80 9.39 6.74 4.26 
13.83 13.02 9.87 6.36 
23.10 20.74 16.10 10.24 
6.57 8.40 5.44 3.36 
10.37 12.46 8.53 5.44 
59.27 10.07 4.32 2.86 
59.43 10.80 4.53 2.96 
14.57 42.68 11.73 7.48 
3.73 6.25 3.42 2.15 
3.87 6.58 3.56 2.18 

•- -. 
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# 

APPENDIX G 

Macros Uaed During the TEST 

1. milX SYSTEM: 

Macro; clr 

Code;  # 
cd  <home directory>/comp_acec 
cd .imports 
rm « 
cd . . 
cd .objects 
rm * 
cd  <home directory>/comp_acec/.nets 
rm * 
cd  <home directory>/comp_acec/.lines 
rm t 
cd  <home directory>/comp_acec 
rm OVAS_table 
rm ada.lib 
rm gnrx.lib 
cd  <home directory>/begin.lib 
cp *.lib <home directory>/comp_acec 
cp QVAS* <home directory>/comp_acec 
cd .objects 
cp * <home directory>/comp_acec/.objects 
cd .. 
cd .nets 
cp * <home directory>/comp_acec/.nets 
cd .. 
cd .lines 
cp * <home directory>/comp_acec/.lines 
cd .. 
cd .imports 
cp * <home directory>/comp_acec/.imports 
cd  <home directory>/comp„acec 

Note: The BEGIN directory contained all libraries 
necessary for the benchmark test modules to compile, i.e. 
the standard Ada libraries and IO_PACKAGE, CPUJTIME and 
INSTRUMENT libraries. 

Macro; clrall 

Code: Same as above except START.LIB is 
substituted for BEGIN.LIB 

Note: The START directory contained only the standard 
,/■v'•.,    Ada libraries. 
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2. AOS/VS SYSTEM! 

Macro: clr.cli 

Code:  dir :accounts:afit:acec 
del +.ob +.Btr +.tree +.sr +.lat ac+ 
dir begin 
move/d Ä+ 
dir :accounts:afit:acec 

Note: The BEGIN directory contained all libraries 
necessary for the benchmark test modules to compile, i.e. 
the standard Ada libraries and IO_PACKAGE, CPUJTIME and 
INSTRUMENT libraries. 

Macro: clrall.cli 

Code: dir :accounts:afit:acec 
del +.ob +.str +.tree +.sr +.lst ac+ 
dir start 
move/d "+ 
dir :accounts:afit:acec 

Note: The START directory contained only the standard 
Ada libraries. 
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APPENDIX H 

3AS Data File for Analysis 1 

Nam? of File.: table.sas 

cards; 
ADDSAl 0 19 14 20 36 3.77 7.88 3.27 1.93 
ADDSA2 0 19 14 32 48 4.00 9.18 3.54 2.10 
AKERA2 3 24 12 28 57 4.03 7.49 3.72 2.19 
A0CEA1 0 27 20 48 90 9.90 12.15 8.14 4.91 
AOIEA1 3 24 20 49 94 9.60 12.06 8.36 5.12 
ASSIA2 0 16 11 1013 1025 12.77 45.48 19.11 10.69 
ASSIB2 0 17 12 2014 2027 24.13 93.08 40.03 21.14 
ATTRIB 17 42 56 167 348 13.24 25.47 14.49 8.30 
BALPA1 2 15 10 13 27 3.37 5.99 3.33 1.95 
BALPA2 2 19 10 15 33 5.67 8.80 5.01 2.85 
BLEMA2 0 18 9 19 164 9.03 11.08 8.05 4.84 
BRUAA1 2 30 17 36 86 9.27 11.27 8.05 4.92 
BRUAA2 2 30 17 38 90 9.00 10.99 7.89 4.77 
BRUNA1 2 25 16 35 77 9.17 11.00 7.94 4.74 
BRUNA2 2 26 16 37 79 13.50 20.35 13.79 8.19 
BSRCA2 10 61 52 117 238 13.73 20.44 13.78 10.89 
BSRCA3 10 60 53 117 237 9.80 11.04 7.80 4.73 

# 

where 

etc 

Column 1 - Program 
Column 2 - nt« 
Column 3 - ni 
Column 4 - ni 
Column 5 - Ni 
Column 6 - Ni 
Column 7 - Unix Compile Times 
Column 8 - AOS/VS Compile Times 
Column 9 - VMS-ISL Compile Times 
Column 10 • - VMS-CSC Compile Times 

e data fil< a must have a '.sas' su NOTE:  The data file must have a '.sas' suffix and 
at least one blank space between columr ;. 

# 
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M 
APPENDIX I 

SA3 Command Files for Analvaia 1 

Name of File; Testl.sas 

Objective: Determine the ad asted coefficient of 
determination for each model and estimate the 
unknown parameters for Model 1. 

m 

Code; DATA; 
INPUT ID $ 10 Nl N2 CN2 CN1 UNIX AOSVS ISL CSC; 
Ntotal = CN1 + CN2; 
Nhat = Nl * L0G2(N1) + N2 « LOG2(N2); 
LOGNtot = LOG(Ntotal); 
LOGNhat = LOG(Nhat); 
VOL = Ntotal « LOG2(2 + N2); 
Vstar = (2+10) « LOG2(2 + 10); 
LOGVOL = LOG(VOL); 
LOGVstar = LOG(Vstar); 
VOLest = Nhat » L0G2(N1 + N2); 
Lhat = 2/Nl»N2/CN2; 
LOGVOLes = L0G(VOLest); 
LOGLhat s LOG(Lhat); 
logtimel a LOG(UNIX); 
logtime2 = LOG(AOSVS); 
logtime3 = LOG(ISL); 
logtime4 = LOG(CSC); 
Effort = V0L*«2 / (Vstar); 
%INCLUDE table; 
PROC REG; 
Model UNIX = Ntotal; 
Model UNIX = Nhat; 
Model AOSVS = Ntotal; 

Model CSC = Nhat; 
Model logtimel s LOGNtot; 
Model logtimel = LOGNhat; 
Model logtime2 = LOGNtot; 

Model logtime4 
Model logtimel 
Model logtimel 
Model logtime2 

LOGNhat; 
LOGVOL LOGVstar; 
LOGVOLes LOGLhat; 
LOGVOL LOGVstar; 

>A 

Model logtime4 = LOGVOLES LOGLhat; 
Model UNIX = Effort; 
Model AOSVS = Effort; 
Model ISL = Effort; 
Model CSC = Effort; 
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..s;.':,. 
Name of File; Test2.aas 

***       Objective: Obtain predicted times and correlate predicted 
and actual compile times for Model 1. 

Code; DATA; 
INPUT ID $ 10 Nl N2 CN2 CN1 UNIX AOSVS ISL CSC; 
Ntotal = CN1 + CN2; 
VOL = Ntotal « L0G2(N1 + N2); 
Vstar = (2 + 10) « LOG2(2 + 10); 
PUNIX = .5281 « (VOL««.4124); 
PAOSVS = .2216 « (VOL««.5830 « Vstar««.0431); 
PISL = .2641 « (VOL««.4730 « Vstar««.1047); 
PCSC = .1681 « (VOL««.4670 « Vstar*«.0991); 
RUNIX = Unix - PUNIX; 
RAOSVS = AOSVS - PAOSVS; 
RISL = ISL - PISL; 
RCSC = CSC - PCSC; 
»INCLUDE table; 
PROC PRINT; 
PROC C0RR; 
VAR UNIX PUNIX AOSVS PAOSVS ISL PISL CSC PCSC; 

NOTE: 'P' prefix - Predicted Compile Time 
'R' prefix - Residual 

Execution:  runsas [filename]  <New Line> 
<New line> 

Note: The '.sas' suffix not required. 

yy\ 
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APPENDIX J 

SAS Data File for Analysis 2 

Name of FüQ: tablet.sas 

cards; 
ADDSAl 0 19 14 20 36 3.77 0 0 
ADDSA2 0 19 14 32 48 4.00 0 0 
AKERA2 3 24 12 28 57 4.03 0 0 
A0CEA1 0 27 20 48 90 9.90 0 0 
A0IEA1 3 24 20 49 

• 
• 

etc 

94 9.60 0 0 

ADDSA1 0 19 14 20 36 7.88 0 
ADDSA2 0 19 14 32 48 9.18 0 
AKERA2 3 24 12 28 57 7.49 0 
A0CEA1 0 27 20 48 90 12.15 0 
AOIEA1 3 24 20 49 

• 
• 

etc 

94 12.06 0 

ADDSAl 0 19 14 20 36 3.27 0 
ADDSA2 0 19 14 32 48 3.54 0 
AKERA2 3 24 12 28 57 3.72 0 
A0CEA1 0 27 20 48 90 8.14 0 
A0IEA1 3 24 20 49 

• 
• 

etc 

94 8.36 0 

ADDSAl 0 19 14 20 36 1.93 
ADDSA2 0 19 14 32 48 2.10 
AKERA2 3 24 12 28 57 2.19 
AOCEA1 0 27 20 48 90 4.91 
AOIEA1 3 24 20 49 94 5.12 

•   S   J 

where 

etc 

Column 1 - Program 
Column 2 - na« 
Column 3 - ni 
Column 4 - na 
Column 5 - Na 
Column 6 - Ni 
Column 7 - Compi. Le Times for all Computers 
Column 8 - Dummy Variable •e' 
Column 9 — Dummy Varaible »f 

NOTE:  The data file must have a '.sas' suffix and 
at least one blank space between columns. 
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# 

APPENDIX  K 

SA8 Command Files for Analysis 2 

Name of File; Test3.sas 

Objective: Determine the translation rate for each 
compiler. 

fiadfi: DATA; 
INPUT ID $ 10 Nl N2 CN2 CN1 TIMES A B; 
Ntotal = CN1 + CN2; 
VOL = Ntotal » L0G2(2 + N2) ; 
Vstar = (2+10) » LOG2(2 + 10); 
LOQVOL = LOG(VOL); 
LOGVstar = L0G(V8tar); I 
Logtime = LOG(TIMES); 
XINCLUDE table1; > 
PROC REG; K 
Model Logtime = LOGVOL LOGVatar; 

Name of File: Tests.sas 

Objective: Obtain compile times from the linear equation 
for each compiler. 

QsdS.'   DATA; 
INPUT ID $ 10 Nl N2 CN2 CN1 UNIX AOSVS ISL CSC; 
Ntotal = CN1 + CN2; 
VOL = Ntotal « L0G2(N1 + N2) ; 
Vstar = (2+10) * LOG2(2 + 10); 
LOGUNIX = -.9918 + (.4839»LOGVOL)+(.0745«LOGVstar); 
LOGAOSVS = -1.0881 + (.4839»LOGVOL)+(.0745»LOGVstar); 
LOGISL = -1.5419 + (.4839«LOGVOL)+(.0745«LOGVstar); 
LOGCSC = -1.6482 + (.4839«LOGVOL)+(.0745«LOGVstar); 
XINCLUDE table; 
PROC SORT; 
by UNIX; 

PROC Print; 
VAR LOGUNIX LOGAOSVS LOGISL LOGCSC; 

Execution:  runsas [filename]  <New Line> 
<New line> 

Note: The '.sas' suffix not required. 
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APPENDIX L 

Sample SAP Output 

SAS Output: 

SAS 

DEP VARIABLE : LOGTIME2 

ANALYSIS OF VARIANCE 

SUM OF MEAN 
SOURCE   DF SQUARES SQUARE     F VALUE PROB>F 

MODEL     2 77.92702 38.96376   444.600 0.0001 
ERROR   168 14.72316 O.08763785 
C TOTAL 170 92.65068 

ROOT MSE 0.2960369 R-SQUARE   0.8411 
DEP MEAN 2.606862 ADJ R-SQ   0.8392 

PARAMETER ESTIMATES 

PARAMETER STANDARD 
VARIABLE DF  ESTIMATE ERROR 

INTERCEP  1  -1.51681 0.1413134 
LOGVOL    1  0.5838089 0.02141666 
LOGVSTAR  1  0.04561004 0.01981437 

T FOR HO: 
PARAMTER=0  PROB>\T\ 

•10.734 
27.260 
2.302 

0.0001 
0.0001 
0.0226 

The ANALYSIS OF VARIANCE part of the printout displays 

results of tests to determine if the model is significant. 

In this example, the model being tested is: 

TIME = K « V« « (V«)«», 

and the null hypothesis is: 

V and V« are NOT significant in computing TIME, 
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There are four values (21:690-691) in this portion of the 

printout that are of particular interest to this analysis. 

1) The number under the entry F VALUE is the F Value for 

testing the hypothesis that all parameters are zero except 

for the intercept.  If this number is near 1, the null 

hypothesis can be accepted.  If this number is large, the 

null hypothesis can be rejected and it can be concluded that 

the model as a whole is significant. 

2) The number under the entry PROB>F is the probability 

of getting a greater F statistic than that observed if the 

hypothesis is true. This is the significance probability. 

In this example, there is a 99.99 probability that the null 

hypothesis is FALSE, and therefore the null hypothesis can 

be rejected and it can be concluded that V and V* are 

significant in computing TIME. 

3) The  number to the right of the R-SQUARE entry is a 

measure between 0 and 1 that indicates the portion of the 

(corrected) total variation that is attributed to the fit 

rather than left to residual error.  This value is also 

called the coefficient of determination.  It is the square 

of the correlation between the dependent variable and the 

predicted values.  This value is not used in this research 

because it cannot be used to compare models that have 

different degrees of freedom. 

4.  The number to the right of the ADJ R-SQ entry is an 

adjusted version of R-SQUARE that has been adjusted for 

degrees of freedom.  Because this value is adjusted for 
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m 
degrees of freedom, it can be used to compare different 

>     models.  In this example, the ÄDJ R-SQ tells us that we can 

account for over 83.92 percent of the compile time just by 

knowing V and V*.  We can also conclude that this model 

reduces the error in estimating compilation time by 83.92 

percent over the average compile time. 

The PARAMETER ESTIMATES part of the printout displays the 

estimated values of unknown variables and also displays the 

results of tests to determine if those variables are 

significant in the overall model.  In this example, the 

estimated linear equation is: 

# 

LOG(TIME) = -1.51681 + 0.584LOG(V) + 0.046LOG(V«); 

Note: LOG = natural logarithm, 

which is equivalent to: 

Time = («-i.•!••») « v(o.»9*)   %   (v«)o.o««( 

There are also four values in this part of the printout 

that are of interest: 

1) The first value under the PARAMETER ESTIMATES entry is 

the estimated value for the first variable, INTERCEP. 

2) The first value under the PROB>\T\ is also associated 

with the first variable, INTERCEP.  This value is the 

probability that a T statistic would obtain a greater 

absolute value than that observed given that the true 

parameter is zero.  This is the two-tailed significance 
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# 

probability.  If this number is small the value of the first 

parameter is not likely to be 0; therefore, the parameter 

contributes significantly to the overall model. 

3) The second and third values under the PARAMETER 

ESTIMATES entry are the estimated values for the exponents 

for V and V«. 

4) The second and third values under the PROB>\T\ entry 

are the T statistics test values for V and V*.  As in 2 

above, if this number is small, the value of the associated 

parameter is not likely to be 0; therefore, the parameter 

contributes significantly to the overall model. 

m 
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APPENDIX M 

Actual (A) vs Predicted (P) Times 

UNIX AOS/VS VMS- •ISL VMS- •CSC 
Program A P A P A P A P 

ADDSAl 3.77 5.41 7.88 6.13 3.27 4.09 1.93 2.51 
ADDSA2 4.00 6.27 9.18 7.54 3.54 4.85 2.10 2.97 
AKERA2 4.03 6.49 7.49 8.56 3.72 6.07 2.19 3.68 
AOCEA1 9.90 8.17 12.15 10.97 8.14 6.57 4.91 4.00 
AOIEA1 9.60 8.23 12.06 11.96 8.36 7.97 5.12 4.81 
ASSIA2 12.77 23.26 45.48 48.15 19.11 21.82 10.69 13.09 
ASSIB2 24.13 31.13 93.08 72.67 40.03 30.47 21.14 18.21 
ATTRIB 13.23 15.11 25.47 30.70 14.49 19.60 8.30 11.59 
BALPA1 3.37 4.55 5.99 5.10 3.33 3.89 1.95 2.37 
BALPA2 3.60 5.00 6.36 5.82 3.46 4.33 2.03 2.64 
BLEMA2 5.67 8.61 8.80 11.81 5.01 6.98 2.85 4.25 
BRUAA1 9.03 7.77 11.08 10.84 8.05 7.17 4.84 4.34 
BRUAA2 9.27 7.92 11.29 11.15 8.05 7.33 4.92 4.43 
BRUNA1 9.00 7.39 10.99 10.10 7.89 6.77 4.77 4.10 
BRUNA2 9.17 7.51 11.00 10.34 7.94 6.90 4.74 4.18 
BSRCA2 13.50 13.13 20.35 24.48 13.79 15.61 8.19 9.29 
BSRCA3 13.73 13.12 20.44 24.44 13.78 15.59 8.16 9.27 
C31PA2 13.80 20.39 35.25 51.22 17.42 34.27 10.89 19.95 

# 

CAPAA1 9.80 7.52 11.04 10.36 7.80 6.91 4.73 4.18 
CAPAA2 9.73 7.84 11.10 11.17 7.92 7.54 4.78 4.55 
CAPAB1 10.37 7.56 11.00 10.44 7.90 6.95 4.82 4.21 
CAPAB2 10.00 7.92 11.21 11.33 7.96 7.63 4.84 4.60 
CASEA2 43.50 31.49 154.12 78.41 25.63 35.70 14.65 21.16 
CENTA2 14.30 18.06 28.25 33.66 7.77 16.32 3.72 9.83 
CHSSA1 7.40 11.59 14.06 19.86 5.77 12.47 3.45 7.46 
CHSSA2 7.57 11.81 14.26 20.40 5.94 12.74 3.59 7.62 
CPUTIM 3.78 3.68 5.57 3.55 5.62 2.63 3.39 1.62 
CSBTA1 8.50 6.17 9.79 7.66 7.45 5.22 4.55 3.18 
CSBTA2 8.77 6.52 9.95 8.27 7.54 5.55 4.48 3.38 
CSCTA1 10.00 8.19 12.06 11.43 8.53 7.22 5.14 4.37 
CSCTA2 10.60 9.05 13.23 13.17 8.79 8.09 5.31 4.90 
CSDTA1 8.77 6.28 9.91 7.85 7.49 5.32 4.52 3.24 
CSDTA2 8.60 6.95 10.26 9.06 7.60 5.98 4.53 3.63 
CSETA1 9.13 7.05 10.62 9.25 7.85 6.08 4.69 6.69 
CSETA2 9.20 7.68 11.06 10.43 8.01 6.70 4.85 4.07 
CSSTA1 8.73 6.26 10.00 7.82 7.50 5.30 4.47 3.23 
CSSTA2 8.67 6.69 10.17 8.59 7.65 5.72 4.54 3.48 
DATABA 93.73 32.13 163.54 99.26 119.02 60.44 72.89 34.87 
DRPCA1 9.23 7.61 10.87 10.82 7.91 7.50 4.75 4.52 
F1IUA1 4.50 6.81 7.44 9.15 4.27 6.41 2.49 3.88 
F1IUA2 4.67 7.01 7.67 9.53 4.41 6.63 2.66 4,01 
FACTA1 4.07 6.55 6.92 8.51 3.62 5.89 2.13 3.57 
FACTA2 5.47 7.45 7.69 10.21 4.54 6.83 2.71 4.14 

C"1 FL2RA1 4.77 7.14 7.66 9.78 4.28 6.77 2.57 4.09 
FL2RA2 4.77 7.38 8.00 10.24 4.41 7.03 2.59 4.25 
FLP1A1 3.67 5.80 6.58 7.17 3.64 5.13 1.69 3.12 
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UNIX        AOS/VS VMS-ISL     VMS-CSC 

1 

> 

# 
Program A P A P A P A P 

FLP1A2 4.10 6.41 6.83 8.27 3.88 5.76 2.28 3.49 M 
FPAAA1 8.60 6.07 9.29 7.65 7.32 5.40 4.48 3.28 >' 
FPAAA2 8.87 6.58 9.47 8.71 7.58 6.16 4.56 3.73 
FPAAB1 9.23 6.80 10.07 8.98 7.77 6.15 4.66 3.73 3 
FPAAB2 9.53 7.74 10.55 11.09 8.15 7.65 4.91 4.61 
FPAAC1 10.33 7.90 11.58 11.10 8.65 7.31 5.23 4.42 6 
FPAAC2 11.17 9.65 12.54 15.57 9.46 10.51 5.69 6.29 i 
FPAAD1 12.37 9.66 14.26 14.76 10.24 9,21 6.17 5.55 _» 

FPAAD2 14.33 12.40 16.17 22.81 11.60 14.96 7.10 8.90 
* ■ 

FPANA1 8.53 5.57 9.22 6.77 7.30 4.89 4.44 2.97 ', 

FPANA2 8.47 5.98 9.27 7.61 7.34 5.52 4.45 3.35 
h 

K 
FPANB1 9.30 6.63 10.08 8.67 7.68 5.98 4.68 3.63 
FPANB2 9.37 7.33 10.46 10.28 7.96 7.19 4.76 4.34 i 
FPANC1 10.37 7.79 11.47 10.88 8.58 7.19 5.16 4.35 m 

FPANC2 10.83 9.15 12.25 14.42 9.13 9.88 5.47 5.92 * 

FPAND1 12.47 9.75 14.24 14.96 10.17 9.31 6.19 5.61 f. 
FPAND2 13.37 11.66 15.45 20.88 10.94 13.93 6.71 8.29 r. 
FPRAA1 9.53 7.31 10.45 10.11 7.86 6.96 4.81 4.20 <•- 
FPRAA2 9.50 7.48 10.45 10.44 7.94 7.14 4.77 4.31 1 
FPRNA1 9.30 6.95 10.29 9.41 7.69 6.56 4.67 3.97 
FPRNA2 9.30 7.07 10.35 9.64 7.75 6.69 4.67 4.04 > 

GVRAA1 8.93 6.32 9.87 8.22 7.53 5.88 4.47 3.56 
GVRAA2 8.93 6.53 9.94 8.62 7.50 6.11 4.55 3.70 

m GVRNA1 8.87 6,07 9.79 7.78 7.40 5.62 4.44 3.41 ■ 
GVRNA2 8.57 6.23 9.87 8.06 7.51 5.79 4.53 3.50 I 
HSDRA2 8.07 10.64 13.95 17.18 6.96 10.69 4.03 6.43 ■^ 

IADDA1 9.47 7.67 11.23 10.42 8.07 6.69 4.82 4.06 > 
IADDA2 9.73 7.85 11.72 10.75 8.02 6.87 4.86 4.17 -, 

IDIVA2 9.40 7.85 11.62 10.75 8.03 6.87 4.88 4.17 N 

IEXPA2 9.77 7.92 11.50 10.89 8.20 6.94 4.83 4.21 
IMIXA2 9.77 7.05 12.44 11.16 8.08 7.08 4.96 4.29 P 
IMIXB1 10.93 8.95 13.00 12.95 8.88 7.99 5.28 4.84 
IMIXB2 11.17 9.57 14.98 14.23 9.10 8.62 5.46 5.21 s 
IMIXC2 11.13 9.46 14.63 14.02 9.06 8.52 5.47 5.15 K 
IMIXD1 11.10 9.70 15.53 14.52 9.20 8.76 5.60 5.30 
IMIXE1 10.83 8.95 13.01 12.95 8.95 7.99 5.37 4.84 ■ 
IMIXE2 11.23 9.76 15.25 14.64 9.16 8.82 5.68 5.34 
INQUIR 84.33 33.77 158.19 105.57 126.40 62.67 80.88 36.17 
INSTR 59.97 38.53 136.58 127.OC 75.48 t 72.59 40.21 41.82 c 
INTDA2 8.47 20.38 22.99 39.92 13.03 18.74 6.95 11.27 .-. 

INTDB2 10.47 30.22 35.98 69.69 24.60 29.45 15.45 17.61 
INTDB3 9.87 22.84 22.91 46.93 20.19 21.36 14.03 12.83 
INTQA2 10.13 6.56 9.23 8.04 6.25 5.11 3.86 3.12 
IOPKG 35.77 22.99 81.91 58.07 45.93 35.32 28.03 20.65 
ISEQA2 15.40 7.99 15.84 10.63 10.94 6.41 6.81 3.90 > 

LAVRA1 11.43 7.14 10.86 9.63 9.15 6.51 5.58 3.95 • ■ 

LAVRA2 11.53 7.37 11.11 10.07 9.22 6.75 5.64 4.09 
LAVRB1 26.03 13.70 22.73 24.19 23.48 13.75 14.37 8.25 i 

& LAVRB2 30.40 14.62 24.24 26.50 24.67 14.81 15.15 8.88 •- 
% LFIRA1 10.97 8.48 14.23 12.27 9.18 7.93 5.59 4.79 

LFSRA1 9.27 7.81 11.15 11.35 
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UNIX AOS/VS VMS- -ISL VMS- -CSC 

# 
Program A P A P A P A P 

L0AEA1 9.20 7.77 11.32 10.84 8.00 7.17 4.86 4.34 
L0ECA1 9.40 7.12 10.87 9.73 7.96 6.74 4.81 4.07 
L0ECA2 9.30 7.31 11.21 10.12 8.10 6.96 4.92 4.20 
L0FCA1 9.43 7.81 11.13 11.46 8.27 8.09 5.04 4.87 
LOSCA1 10.27 8.27 12.00 12.05 9.62 8.01 5.84 4.83 
LOUIA1 9.13 7.34 11.08 10.17 8.20 6.99 4.99 4.22 
LOUIA2 9.17 7.44 11.08 10.37 8.20 7.10 4.97 4.29 
LRR1A1 8.97 8.07 11.39 11.43 8.04 7.49 4.78 4.53 
LRR1A2 9.30 8.23 11.46 11.77 7.97 7.66 4.80 4.63 
LRR3A1 9.30 8.82 12.82 12.97 8.36 8.29 4.99 5.01 
LRR3A2 9.37 9.05 13.14 13.46 8.48 8.55 4.98 5.16 
LVRAB1 16.57 13.52 21.01 23.72 13.26 13.53 8.08 8.12 
LVRAB2 17.60 14.21 22.06 25.46 13.71 14.33 8.51 8.59 
MINIA2 3.23 3.93 5.08 3.89 2.79 2.84 1.70 1.75 
MTCQA2 9.63 6.02 8.99 7.11 6.06 4.62 3.70 2.83 
MTESA2 11.03 6.21 10.90 7.44 8.05 4.79 5.08 2.93 
MULTAl 3.97 5.39 6.94 6.10 3.25 4.08 2.00 2.50 
MUTLA2 4.07 6.27 8.20 7.55 3.52 4.85 2.18 2.97 
NL00A1 9.63 6.17 8.60 7.83 7.02 5.51 4.30 3.34 
NL07A2 9.63 7.79 10.94 10.89 8.16 7.19 4.93 4.35 
NL65A2 32.13 14.15 4 7.78 25.31 15.15 14.26 9.26 8.55 
NPPCA1 9.63 7.17 10.41 9.97 7.90 7.01 4.82 4.23 
NPPCA2 9.33 6.78 9.95 9.20 7.91 6.57 4.67 3.97 
NRPCA1 12.87 9.54 12.73 15.20 9.35 10.18 5.67 6.10 c» NRPCA2 12.97 9.58 12.85 15.29 9.34 10.23 5.71 6.13 

^.v- NULLA1 3.81 5.11 6.82 5.64 4.47 3.83 2.63 2.35 
NULLA2 3.93 5.21 6.76 5.81 4.41 3.92 2.60 2.41 
OPAEA1 11.07 9.66 15.21 14.75 8.98 9.20 5.50 5.55 
OPBFA1 9.60 7.68 11.40 10.44 8.14 6.70 4.95 4.07 
OPCEA1 11.63 9.80 14.14 16.01 9.33 10.87 5.65 6.50 
OPISA1 11.83 10.79 17.01 17.26 9.48 10.45 5.68 6.29 
OPNFA1 8.90 7.36 11.21 10.04 7.77 6.74 4.78 4.08 
OPSCA1 11.40 9.74 14.35 14.93 10.20 9.30 6.46 5.61 
PGQUA2 10.03 7.72 10.00 10.13 6.44 6.16 3.99 3.76 
PIALA2 4.40 8.44 9.88 11.49 4.26 6.82 2.50 4.16 
PKGEA1 41.70 17.87 63.65 39.76 82.27 25.05 37.55 14.74 
PKGEA2 43.77 18.23 67.57 40.91 84.97 25.64 40.04 15.08 
PRCOA2 8.73 11.36 12.88 19.28 6.73 12.18 4.17 7.29 
PUZZA2 23.10 23.27 62.19 57.76 28.80 33.92 12.52 19.88 
RANDA2 4.17 8.77 8.45 13.24 4.01 8.83 2.41 5.31 

' RCDSA2 89.87 63.93 **«» 201.02 122.16 69.56 66.82 41.13 
RENDA1 5.47 7.31 7.67 9.73 4.29 6.33 2.56 3.85 
RENDA2 5.30 7.23 7.69 9.57 4.32 6.25 2.62 3.80 
RPTWRI 3.70 5.29 6.94 6.70 2.90 5.36 1.77 3.23 
SCHEMA 74.17 20.57 62.97 45.03 42.57 24.58 26.82 14.57 
SIEVA1 3.83 6.27 6.49 7.55 3.54 4.85 2.21 2.97 
SIEVA2 4.63 8.25 8.99 12.00 4.20 7.99 2.54 4.82 

^ NOTE : *«»* = 1535. 62 
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UNIX AOS/VS VMS- -ISL VMS- •CSC 
Program A P A P A P A P 

S0RTA2 10.23 11.04 15.06 16.78 8.75 9.28 5.54 5.63 
SQ10A2 13.50 5.89 13.50 6.90 9.81 4.51 6.26 2.76 
SQPGA2 13.83 6.66 14.15 8.21 10.09 5.19 6.43 3.17 
SRCRA1 8.97 9.90 14.03 14.94 8.97 8.97 5.70 5.42 
TAIPA1 5.43 7.27 7.38 9.87 4.51 6.64 2.83 4.02 
TAIPA2 5.63 7.97 7.64 11.23 4.63 7.38 2.97 4.46 
TPGTA2 5.63 7.70 7.19 10.10 4.63 6.14 2.98 3.75 
TPGTC2 9.47 14.23 13.97 28.41 8.33 18.66 5.27 11.03 
TPITA1 6.27 8.04 7.82 11.12 5.05 7.06 3.17 4.28 
TPITA2 6.57 8.30 8.00 11.64 5.17 7.32 3.38 4.44 
TPITB1 9.93 10.71 10.75 16.68 7.44 9.81 4.78 5.92 
TPITB2 11.13 11.69 11.56 18.88 8.09 10.84 5.17 6.54 
TPITD1 23.73 16.61 20.98 29.91 16.19 14.83 10.08 8.94 
TPITD2 28.80 18.83 24.94 35.70 18.99 17.12 11.92 10.30 
TP0TA2 12.30 14.65 15.99 25.03 9.37 12.83 5.90 7.75 
TP0TC2 29.90 25.63 42.70 55.21 21.76 24.38 13.54 14.61 
TPSTA2 5.50 6.99 6.94 8.80 4.48 5.49 2.80 3.35 
TPTCB2 8.80 9.68 9.39 13.94 6.74 7.98 4.26 4.85 
TPTCC2 13.83 12.39 13.02 19.76 9.87 10.59 6.36 6.42 
TPTCD2 23.10 16.63 20.74 29.96 16.10 14.85 10.24 8.95 
TPUTE2 6.57 8.41 8.40 12.13 5.44 7.85 3.36 4.75 
UAPAA1 10.37 9.02 12.46 14.05 8.53 9.55 5.44 5.73 
VFADA1 59.27 6.51 10.07 7.96 4.32 5.07 2.86 3.10 

^ VFADA2 59.43 6.91 10.80 8.66 4.53 5.42 2.96 3.31 v WHETA2 14.57 18.36 42.68 39.68 11.73 23.45 7.48 13.86 
WHLPA1 3.73 4.93 6.25 5.80 3.42 4.43 2.15 2.69 
WHLPA2 3.87 5.19 3.58 6.23 3.56 4.69 2.18 2.85 
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APPENDIX N 

Plot of the Actiial vs Predicted Conpile Times 
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